
Republic of Tunisia
Ministry of Higher Education and Scientific Research

Manouba University
National School of Computer Sciences

THESIS
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
Computer Sciences

by

Sarra FALLEH

Analysis of hyperspectral images by content using a Geometric
Deep Learning approach

Conducted within the CRISTAL laboratory, GRIFT research group

Defended on jj/mm/aaaa, in front of the committee composed of:

President: Pr.
Reviewer: Pr. Slim MHIRI
Reviewer: Pr. Olfa MARRAKCHI
Thesis Director: Pr. Faouzi GHORBEL
Thesis Co-Director: Dr. Molka TROUDI



République Tunisienne
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université de Manouba
École Nationale des Sciences de l’Informatique

THÈSE
Présentée en vue de l’obtention du diplôme de

Doctorat en Sciences Informatiques

par

Sarra FALLEh

Analyse d’images hyperspectrales par le contenu par une
approche Deep Learning Géometrique

Réalisée au sein du laboratoire CRISTAL, pôle GRIFT

Soutenue le jj/mm/aaaa, devant le jury composé de :

Président : Pr.
Rapporteur : Pr. Slim MHIRI
Rapporteur : Pr. Olfa MARRAKCHI
Directeur de Thèse : Pr. Faouzi GHORBEL
Codirecteur de Thèse : Dr. Molka TROUDI



DEDICATIONS

To my beloved family, for their endless love, support, and patience.

To my father, who may no longer be with us in this world, but whose guidance and memory

light my path every day. I carry your wisdom and love with me in every step I take.

To my mother, whose unwavering prayers and faith brought me to where I stand today. Your

strength and love have been my constant source of courage.

To my big sister, who encourages me in her own unique ways, always by my side in spirit.

To my soul-mate sister, without whom I wouldn’t be here. You have never stopped pushing me

and believing in me.

To my brother, and to my sister- and brother-in-law, for their support and presence in this

journey.

To my two nieces and two nephews, who bring so much joy, light, problem, worries and

laughter into my life. You are the ones who give me the reason to dream bigger and love deeper.

To my friends, who have been there to encourage, uplift, and inspire me in countless ways.

To All of you,

I dedicate this work.

Falleh SARRA

UMA/ENSI i



ACKNOWLEDGEMENT
First, I express my deepest gratitude to my Ph.D. supervisor, Professor Faouzi GHORBEL,

for his invaluable guidance, patience, and continuous support throughout the course of my

research. His expertise and dedication have been crucial in shaping the direction and outcome

of this thesis.

I am equally grateful to my thesis Co-Director, Dr. Molka TROUDI, for her consistent

support, understanding, mentorship and insightful feedback, which have greatly enriched me

and my research. Her thoughtful advice has been a guiding light through the challenges of this

journey.

I also extend my sincere thanks to the jury members, Professor Olfa MARRAKCHI,

Professor Slim MHIRI for their time, insightful comments, and valuable feedback on my work.

Their contributions have helped elevate the quality of this thesis.

In addition, I would like to express my gratitude to the administrative team of ENSI. Their

support, efficiency, and dedication have greatly contributed to creating a smooth and productive

environment for my research.

Finally, to my family and friends, who have provided constant encouragement and support

throughout this long journey, I owe more than words can express. Your belief in me has been

my greatest source of strength.

UMA/ENSI ii



TABLE OF CONTENTS
LIST OF FIGURES ix

LIST OF TABLES x

LIST OF ABBREVIATIONS AND ACRONYMS xi

GENERAL CONCLUSION 1

1 Fundamentals of Statistical Estimation and Model Evaluation 4

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Non-Parametric Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Overview of Non-Parametric Estimators . . . . . . . . . . . . . . . . . 8

1.2.2 Kernel Density Estimation (KDE) . . . . . . . . . . . . . . . . . . . . 12

1.3 Expectation-Maximization: Algorithmic Foundations and Variants . . . . . . . 17

1.3.1 Introduction to Maximum Likelihood Estimation (MLE) . . . . . . . . 18

1.3.2 The Univariate EM Algorithm . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 EM Algorithm Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Regression Evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.1 Error-Based Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 Percentage-Based Metrics . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.3 Variance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.4 Logarithmic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.5 Bias Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

UMA/ENSI iii



TABLE OF CONTENTS

1.4.6 Relative Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4.7 Additional Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 36

1.4.8 Averaging Single-Iteration Metrics . . . . . . . . . . . . . . . . . . . . 37

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 The Diffeomorphism Expectation-Maximization Algorithm 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Diffeomorphism Expectation Maximization Algorithm . . . . . . . . . . . . . 42

2.2.1 Integration of Logarithmic Transformation and EM Algorithm . . . . . 42

2.2.2 EMD Initialisatiion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.3 the EMD Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Experimentation on simulated data . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Two-Component Mixture Model . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Three-Component Mixture Model . . . . . . . . . . . . . . . . . . . . 50

2.3.3 Five-Component Mixture Model . . . . . . . . . . . . . . . . . . . . . 52

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Application 1 : Ultrasound Image Segmentation . . . . . . . . . . . . . . . . . 55

2.4.1 Reference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.3 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Application 2 : Affine Multi-Scale Curve Registration Using EM Algorithm . . 72

2.5.1 Affine Multi-Scale Curve Registration (AMSCR) . . . . . . . . . . . . 74

2.5.2 AMSCR-EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

UMA/ENSI iv



TABLE OF CONTENTS

2.5.3 Experimentation and Results . . . . . . . . . . . . . . . . . . . . . . . 79

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 Assessment of deep learning algorithms for financial forecasting 85

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Overview of Financial Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Probabilistic Criterion for Algorithms Evaluation . . . . . . . . . . . . . . . . 92

3.5 The CDTC criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 result and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.1 Traditional evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.2 Probabilistic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Hyperspectral Image Segmentation Using Geometric Deep Learning 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 An Overview on Hyperspectral Image Segmentation . . . . . . . . . . . . . . . 109

4.2.1 PCA in Hyperspectral Image Processing . . . . . . . . . . . . . . . . . 109

4.2.2 Multi-Scale Graph Construction in HSI . . . . . . . . . . . . . . . . . 110

4.2.3 Geometric Deep Learning for Image Segmentation . . . . . . . . . . . 110

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.1 Graph Convolutional Network (GCN) . . . . . . . . . . . . . . . . . . 111

4.3.2 Graph Attention Network (GAT) . . . . . . . . . . . . . . . . . . . . . 112

4.3.3 Hybrid GCN-GAT Model . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.4 The proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . 113

UMA/ENSI v



TABLE OF CONTENTS

4.3.5 Model Training and Testing . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.1 Pavia University Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

GENERAL CONCLUSION 121

BIBLIOGRAPHY 123

Appendix : The Mathematical Foundation for Bandwidth Optimization

UMA/ENSI vi



LIST OF FIGURES
1.1 Schematic representation of the Plug-in algorithm . . . . . . . . . . . . . . . . 15

1.2 Comparison of Bandwidth Optimizers . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Visualization of the individual components in the bimodal mixture . . . . . . . 47

2.2 Comparison of the estimated bimodal mixture distribution by EM and EMD

with the theoretical mixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Visualizing the Unimodal mixture individual distribution components . . . . . 49

2.4 Comparison of the original unimodal mixture with the estimates from EM and

EMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Visualization of the individual components in the three-component mixture model. 51

2.6 Comparison of the simulated data (original mixture of two log-normal and

exponential distributions) with estimates from EM and EMD. . . . . . . . . . . 52

2.7 Visualization of the individual components in the five-component mixture model. 53

2.8 Simulated data with a mixture of five distributions, and estimates from EM and

EMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 Histogram of an Ultrasound Image illustrating the pixel intensity distribution. . 55

2.10 U-Net architecture diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.11 Elbow method applied to an ultrasound image. . . . . . . . . . . . . . . . . . . 66

2.12 Segmentation results for six sample images from the benign folder: (a) Original

image, (b) Ground truth mask, (c) EMD segmentation, (d) Canny segmentation,

(e) U-Net segmentation, (f) EM segmentation. . . . . . . . . . . . . . . . . . . 67

UMA/ENSI vii



LIST OF FIGURES

2.13 Segmentation results for six sample images from the malignant folder: (a)

Original image, (b) Ground truth mask, (c) EMD segmentation, (d) Canny

segmentation, (e) U-Net segmentation, (f) EM segmentation. . . . . . . . . . . 69

2.14 Segmentation results for six sample images from the normal folder: (a) Original

image, (b) Ground truth mask, (c) EMD segmentation, (d) Canny segmentation,

(e) U-Net segmentation, (f) EM segmentation. . . . . . . . . . . . . . . . . . . 71

2.15 Estimated PDF of L2 using FKDE . . . . . . . . . . . . . . . . . . . . . . . . 78

2.16 Diagram of the AMSCR-EM algorithm. . . . . . . . . . . . . . . . . . . . . . 78

2.17 Visual representation of the PDF estimated by EM algorithm and the point of

intersection between them . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.18 Examples from the MPEG-7 dataset. [[Wang and Gao, 2014]] . . . . . . . . . 80

2.19 Example shapes from the KIMIA-99 dataset. . . . . . . . . . . . . . . . . . . 82

3.1 visual comparison of real and predicted prices -single iteration- using 6 input

features, with and without PCA (architecture 1 and 3). . . . . . . . . . . . . . 96

3.2 visual comparison of real and predicted prices -single iteration- using 91 input

features, with and without PCA (architecture 2 and 4). . . . . . . . . . . . . . 96

3.3 Localized View on one-year period : visual comparison of real and predicted

prices -single iteration - using 6 input features, with and without PCA (architec-

ture 1 and 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Comparison of real and predicted prices -100 iterations- using 6 input features,

with and without PCA. (architecture 1 and 3) . . . . . . . . . . . . . . . . . . 99

3.5 Comparison of real and predicted prices -100 iterations- using 91 Input features,

with and without PCA.(architecture 2 and 4). . . . . . . . . . . . . . . . . . . 99

3.6 Localized View: Comparison of real and predicted prices -100 iterations- using

6 input features, with and without PCA on one-year period.(architecture 1 and 3) 100

UMA/ENSI viii



LIST OF FIGURES

3.7 Probability density function of prediction errors of Architecture 1 (ARCH1) and

Architecture 3 (ARCH3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.8 Visualization of CDTCARCH1 and CDTCARCH3. . . . . . . . . . . . . . . . . . 102

3.9 Probability density function of prediction errors of Architecture 2 (ARCH2) and

Architecture 4 (ARCH4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.10 Visualization of CDTCARCH2 and CDTCARCH4. . . . . . . . . . . . . . . . . . 103

3.11 A zoomed view to the probability density function of prediction errors of

Architecture 2 (ARCH2) and Architecture 4 (ARCH4) . . . . . . . . . . . . . 104

4.1 Cumulative Variance for the PaviaU Dataset Explained by PCA Components. . 117

4.2 Segmentation Results on Pavia University Dataset. . . . . . . . . . . . . . . . 118

UMA/ENSI ix



LIST OF TABLES
1.1 MISE values for different bandwidth selection methods. . . . . . . . . . . . . . 16

2.1 Integrated Mean Squared Error (MISE) for the Bimodal Mixture Model . . . . 48

2.2 Integrated Mean Squared Error (MISE) for the Unimodal Mixture Model . . . 50

2.3 Integrated Mean Squared Error (MISE) for the three-component mixture of

log-normal and exponential distributions . . . . . . . . . . . . . . . . . . . . . 52

2.4 Integrated Mean Squared Error (MISE) for the five-component mixture model . 54

2.5 Evaluation metrics for benign Folder . . . . . . . . . . . . . . . . . . . . . . . 68

2.6 Evaluation metrics for malignant Folder . . . . . . . . . . . . . . . . . . . . . 70

2.7 Retrieval results on the entire MPEG-7 Set-B dataset. . . . . . . . . . . . . . . 81

2.8 Top 10 closest matching shapes for KIMIA-99 dataset. . . . . . . . . . . . . . 83

3.1 List of parameters and their corresponding range of values used in Optuna . . . 91

3.2 Comparing the stock price prediction results of the different architectures on

one single iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3 Comparing the stock price prediction results of the different architectures on

100 iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4 CDTC values of studied architecture models . . . . . . . . . . . . . . . . . . . 104

4.1 Performance Metrics for Pavia University Dataset . . . . . . . . . . . . . . . . 118

4.2 Per Class Precision for Pavia University Dataset . . . . . . . . . . . . . . . . 119

UMA/ENSI x



List of Abbreviations and Acronyms
AMSCR Affine Multi-Scale Curve Registration

AMSCR-EM Affine Multi-Scale Curve Registration Using EM Algorithm

CDTC Cumulative Distribution Target Criterion

EM The Expectation Maximization algorithm

EMD The Diffeomorphism Expectation Maximization Algorithm

FKDE Fast Kernel Density Estimate

GAT Graph Attention Networks

GCN Graph Convolutional Networks

GDL Geometric deep learning

GMM Gaussian Mixture Models

HSI Hyperspectral imaging

IoU Intersection over Union

KDE kernel density estimators

DKDE Diffeomorphic kernel Density Estimators

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

MCEM Monte Carlo EM

UMA/ENSI xi



LIST OF ABBREVIATIONS AND ACRONYMS

MISE Mean Integrated Square Error

MLE Maximum Likelihood Estimation

MSE Mean Squared Error

MSLE Mean Squared Logarithmic Error

PCA Principal Component Analysis

PDF Probability Density Function

RMSE Root Mean Squared Error

UMA/ENSI 1



GENERAL INTRODUCTION
With the increasing importance of data analysis across a wide range of fields, this thesis is

dedicated to exploring and evaluating advanced classification and regression algorithms. In this

thesis, we propose a set of original Expectation Maximization algorithms adapted to nonlinear

data, which are defined by the fact that they do not belong to a vector space. The spaces of such

data are represented by topological and differential manifolds. As an example, for dimensions

greater than or equal to 2, we can mention the quarter plane, spheres, etc. In this research,

the one-dimensional case is thoroughly studied. One-dimensional nonlinear data belong to

semi-bounded domains (the half-real line) or bounded domains such as compact intervals. This

new family of algorithms, which we propose in this thesis, can be identified as belonging to the

new class called "geometric deep learning".

In this thesis, we address the challenges associated with the EM algorithms in unsupervised

classification. A common issue arises when dealing with data on a bounded or semi-bounded

support, especially with an accumulation of data near the finite endpoint. The boundary issues,

a well-known problem in non-parametric density estimation [Malec and Schienle, 2014], can

deeply impact the estimation quality near the finite endpoints of the support and can produce

an overflow above the end of the support. To address this issue, several boundary correction

methods have been proposed. The reflection method [Choi et al., 2022] utilizes the concept of

reflecting observations beyond the boundaries to create a larger sample space, thus reducing

bias at the edges. Boundary kernels [Marshall and Hazelton, 2010] specially designed kernel

functions that diminish their influence as they approach the boundaries, ensuring smoother and

more accurate density estimates near the support limits. Transformation methods [Marron

and Ruppert, 1994] involve altering the original data to map the boundary points to a more

central region, thus mitigating the distortion caused by the boundaries and improving the overall

estimation quality, etc.

The EM algorithm can also be affected by boundary issues. The estimated parameters

may not be appropriate for the data near the boundaries, especially in cases where there is

UMA/ENSI 1



GENERAL INTRODUCTION

an agglomeration near the endpoint of the support. To address the boundary issues in the EM

algorithm, we propose a novel approach that applies a diffemorphic transformation on the data

that converts the bounded or semi-bounded support to an unbounded support. This approach

involves performing an unsupervised estimation on the infinite support and then applying a

reverse function to return to the original support. This method aims to improve the robustness

and accuracy of the EM algorithm near the finite endpoints of the support.

Another part of the thesis focuses on the evaluation of regression algorithms, specifically

deep learning models such as LSTM. We aim to evaluate the performance of LSTM models

under various conditions, including technical analysis and dimensionality reduction.

Traditional evaluation metrics, while useful, often lack the precision required to detect

nuanced performance differences, leading to potentially inaccurate estimation of an algorithm’s

true capabilities or limitations. So, in this thesis, we will base our algorithm’s evaluation on

their error distribution. As the error can be viewed as a realization of a continuous random

variable, estimating its distribution can provide us with insights into the accuracy and stability

of the prediction model.

To be able to estimate these PDFs, we first need to address the challenge of density

estimation in regression. As we have no knowledge about the errors’ distribution shape

(multiple local minima, one local minima, etc.) or components (potential mixture distributions),

we will utilize a non-parametric methods for probability density estimation. The Kernel

Density Estimator (KDE) will be employed with the bandwidth optimized using the fast plug-in

algorithm (the Fast Kernel Density Estimator (FKDE) [Troudi et al., 2008]). This algorithm

identifies the distribution without assuming a specific parametric form.

A probabilistic criterion is also used to quantitatively assess the algorithm’s performance.

The Cumulative Target Distribution Criterion (CDTC) was introduced in [Ben Slimen et al.,

2022]. The CDTC is specifically designed to address the limitations of existing metrics

by providing a more robust evaluation of algorithms. It offers a new perspective on model

evaluation based on the error cumulative distribution function.
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GENERAL INTRODUCTION

The thesis dissertation is organized into four main chapters. The first chapter 1 begins

with a detailed exploration of the theoretical foundations of the statistical methods used in the

following chapters. First, we start with an overview of the non-parametric estimation methods,

and we focus on the Kernel density estimator and the bandwidth optimizers. The second part

of the first chapter will focus on the presentation of the EM algorithm and its popular variants.

The last section of the first chapter provides an overview of the most commonly used traditional

evaluation metrics in regression, offering a detailed but not exhaustive review.

The first chapter 2 will be dedicated to the introduction of the new variant of the EM

algorithm. This new variant was specially developed to deal with the boundary issues with

the EM algorithm. Here, we propose to apply a diffeomorphic transformation on the data to

transform it from a bounded support to an infinite support, identify the mixture components

on the infinite support and then re-transform the obtained parameters to the original space with

the reverse diffeomorphic transformation. The EMD algorithm will be tested on simulated data

and will be applied to real-data applications such as the ultrasound image segmentation. The

EM effectiveness in identifying mixture’s components is evaluated in the context of Multi-scale

Contour Registration.

In the chapter 3, we concentrate on the evaluation of deep learning algorithms precisely

LSTM. We will compare and evaluate the LSTM performance in the financial forecasting field.

We also want to assess the impact of the dimensionality reduction with PCA on the accuracy

and stability of the LSTM algorithm. To do so, we will use the probabilistic criterion CDTC to

provide deeper insight into model performance compared to traditional metrics.

In the chapter 4, we focus on applying geometric deep learning (GDL) techniques to

hyperspectral image segmentation. Given the complexity and high-dimensional nature of

hyperspectral data, traditional algorithms face challenges in handling these images. GDL,

which can manage non-Euclidean structures like graphs [Bronstein et al., 2017], is well-suited

for this task. We compare three GDL-based segmentation modelsGCN, GAT, and a hybrid

GCN-GATwith and without Principal Component Analysis (PCA), to evaluate their effective-

ness in hyperspectral image analysis.
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Chapter 1 Abstract

This chapter provides an overview of statistical estimation methods and model evaluation

techniques, with a focus on both non-parametric estimators and regression metrics. It begins

with an introduction to non-parametric estimators, including Kernel Density Estimation (KDE),

and explores bandwidth optimization methods such as cross-validation, rule of thumb (ROT),

and the plug-in method, as well as various KDE variants.

The chapter then delves into the Expectation-Maximization (EM) algorithm, discussing its

foundations in Maximum Likelihood Estimation (MLE) and its various extensions, such as

Stochastic EM, Monte Carlo EM, and Variational EM, among others. Key algorithmic steps

including initialization, expectation, maximization, and convergence criteria are examined.

Lastly, a detailed analysis of regression evaluation metrics is provided. Different types

of metrics, including error-based, percentage-based, and variance-based metrics, are re-

viewed, as well as additional measures such as bias metrics, relative measures, and averaging

single-iteration metrics. This chapter lays the groundwork for evaluating algorithms with

precision and accuracy, addressing both the strengths and limitations of each metric.
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1.1 Introduction

This first chapter introduces the scientific basis of the research developed in the following

chapters of this thesis. The first section 1.2, will provide a review of probability density

function (PDF) estimation, a fundamental task in statistical data analysis. The PDF estimation

is categorized into parametric and non-parametric approaches.

The Parametric PDF estimation supposes that the data follows a known probability

distribution, characterized by a set of parameters. It is based on selecting a probability

distribution (e.g., Gaussian, Poisson, exponential) and estimating its parameters using the

observed data. This approach simplifies the estimation process by reducing it to determining a

limited number of parameters.

In the literature, many methods were developed for parametric PDF estimation. For

example, maximum likelihood estimation (MLE) is one of the most widely used. It calculates

the best-fitting parameters for a given distribution to match the observed data. In other words,

they adjust the parameters of the chosen distribution to maximize the likelihood of seeing

the data we have. ([Myung, 2003] [Francos et al., 1995] [Van der Linden, 2016]). Another

common method is the method of moments. This method matches the sample moments

(e.g., mean, variance) with the theoretical moments of the assumed distribution [Sumair et al.,

2022] [Barboza and Viens, 2017]. The Least Squares method minimizes the sum of squared

differences between the observed data and the predicted values from the model [Ding, 2023]

[Galrinho et al., 2014]. The Bayesian Estimation is another popular method that combines prior

knowledge about the parameters with the observed data to obtain a posterior distribution [Alpert

and Yuan, 2008] [Allison and Dunkley, 2014].

The major limitation of parametric density estimation is the assumption of the correct

distribution. If the assumed distribution is incorrect, the estimates can be biased. Therefore,

in cases where no prior assumptions about the data distribution can be made, non-parametric

methods become more appropriate. Unlike parametric approaches, non-parametric PDF

estimation does not assume that the data follows any specific family of distributions. Instead,
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these methods focus directly on estimating the density function from the data itself. This makes

non-parametric methods highly flexible and powerful when dealing with mixtures, complex, or

unknowing distributions.

In the context of classification, where the data consists of a mixture of populations without

any prior assumptions regarding the PDF of the underlying components, the parametric methods

are not well suited for such cases. Therefore, we will utilize the non-parametric multi-modal

methods. Given that non-parametric methods require bandwidth optimization, the first section

1.2 provides an overview of these methods, with particular emphasis on KDE.

In a second section 1.3, we focused on the Expectation-Maximization (EM) algorithm, a

powerful tool for finding maximum likelihood estimates of parameters in statistical models,

particularly in problems with incomplete data or latent variables [McLachlan and Krishnan,

2007] [Sammaknejad et al., 2019]. It is an iterative algorithm commonly used to estimate the

parameters of a Gaussian Mixture Model (GMM) by alternating between estimating the missing

data (Expectation step) and optimizing the likelihood (Maximization step).

In the third section 1.4, we will review various evaluation metrics employed in the literature.

Given the large number of metrics available, this thesis will specifically concentrate on a limited

number of regression evaluation metrics.

1.2 Non-Parametric Estimators

Non-parametric estimation is essential in machine learning, especially when the data distribu-

tion is unknown, either because it does not correspond to a known distribution or because the

samples follow a mixture of different distributions (case of classification problems). Unlike

parametric methods, which are based on the assumption that the data follow a specific

distribution, non-parametric methods make no assumptions about the statistical distribution of

the data.
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1.2.1 Overview of Non-Parametric Estimators

Non-parametric estimators do not assume a predefined form for the underlying probability

distribution. Instead, they use the data itself to estimate the distribution directly.

This approach is particularly useful when the data distribution is unknown or when the data

consists of a mixture of different distributions with no prior information available about the

component distributions.

Numerous non-parametric methods for PDF estimation are documented in the literature.

This section will highlight the principal, most popular ones.

• Histograms are among the most straightforward non-parametric methods. They are

One of the simplest, earliest non-parametric estimation approaches. They operate

by partitioning the data into discrete intervals, or bins, and estimating density based

on the frequency of observations within each bin. This simplicity makes histograms

easy to implement and interpret. However, the histogram approach often suffers from

discontinuities and lacks smoothness [Silverman, 1986]. Their effectiveness can be

limited by the choice of bin width and boundaries, which may affect the smoothness

and accuracy of the resulting density estimate [Coq et al., 2009]. The histogram density

estimator f̂(x) can be expressed as:

f̂(x) =
1

N · hN

N∑
i=1

I[ai,ai+hN ](x),

where N is the number of observations, hN is the bin width, I[ai,ai+hN ](x) is an indicator

function that equals 1 if x is in the bin interval [ai, ai + hN ] and 0 otherwise, and ai

represents the starting point of the i-th bin.

• Spline PDF estimator, introduced by [Wahba, 1981], divides the data range into intervals

and applies polynomial functions within each interval, with smooth transitions at points

called knots. Specifically, a spline function can be represented as:
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S(x) =
N∑
i=1

ciBi(x), (1.1)

where Bi(x) are the basis functions, and ci are the coefficients determined by the spline

fitting process.

However, spline smoothing requires careful selection of the number and the placement

of knots and polynomial degrees to balance between fitting the data well and avoiding

overfitting [Kirkby et al., 2023].

• Orthogonal series estimators [Schwartz, 1967]. They express the unknown density

function as a linear combination of orthogonal functions, such as Fourier, Hermite, or

wavelet [Hall, 1982]. These functions form a basis for a function space, meaning that any

function in the space can be represented as a linear combination of these basis functions.

The density function f(x) can be represented as:

f̂(x) =
∞∑
i=1

αiϕi(x), (1.2)

where ϕi(x) are the orthogonal basis functions (e.g., Fourier or wavelet functions), and αi

are the coefficients determined from the data. Despite its advantages, it can be complex

to implement and interpret.

• self-consistent estimators [Bernacchia and Pigolotti, 2011] defines an iterative proce-

dure to refine density estimates. In this method, a candidate density function f̂(x) is

updated iteratively based on previous estimates. The self-consistent estimator can be

expressed as:

f̂ (t+1)(x) =
1

N

N∑
i=1

g
(
x; f̂ (t)(xi)

)
, (1.3)

where f̂ (t)(x) denotes the density estimate at iteration t, g is a function derived from the

specific self-consistent method, and xi are the data points. This approach iterates to refine

density estimates, avoiding the need for parameters like bin sizes or bandwidths.
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• Neural network-based estimator [Magdon-Ismail and Atiya, 1998] uses artificial neural

networks to model and estimate the underlying probability distribution of data. The neural

network is trained on a set of data points to learn the mapping between the input data and

the probability density function. The density estimate f̂(x) at a given point x is obtained

through the output of the neural network, which adjusts its parameters θ to minimize a

loss function related to the observed data distribution. The formula can be represented as:

f̂(x) = NN(x; θ), (1.4)

where NN(x; θ) is the neural network function with parameters θ, trained to approximate

the probability density at each input point x. Training is performed by optimizing the

parameters θ to minimize a suitable loss function, often based on maximum likelihood or

other related objectives. Once trained, the network provides flexible and adaptive density

estimates across the data space. The neural network-based density estimators are rapidly

developing and gaining in popularity [Papamakarios et al., 2017] [Uria et al., 2016].

However, considerations such as training time, the complexity of the neural network,

and avoiding overfitting are crucial for accurate estimation [Papamakarios et al., 2017].

• The nearest-neighbor estimator, proposed by [Fix and Hodges, 1989], estimates density

by considering the distance to the k-th nearest neighbor in the dataset. The density at

a point x is inversely proportional to the volume of the region containing the nearest k

neighbors of x. The formula for the nearest-neighbor density estimate f̂(x) is given by:

f̂(x) =
k

N · Vk(x)
, (1.5)

where k is the number of neighbors, N is the total number of data points, and Vk(x) is the

volume of the region containing the k nearest neighbors of x. This method adapts to the

local structure of the data and provides flexibility, but it can be computationally intensive

and sensitive to the chosen distance metric.
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• Kernel Density Estimation (KDE) Introduced by [Rosenblatt, 1956] and developed by

[Parzen, 1962], addresses some limitations of the histogram by providing a continuous

estimate of the probability density function. KDE applies a kernel function to smooth

the data, averaging contributions from nearby observations. This method yields a more

refined and smooth density estimate compared to histograms [Silverman, 1986]. The

formula for KDE is:

f̂(x) =
1

NhN

n∑
i=1

K

(
x− xi

hN

)
, (1.6)

where f̂(x) is the estimated density at point x, N is the number of data points, hN

is the bandwidth (smoothing parameter), K is the kernel function, and xi are the data

points. The choice of the bandwidth hN greatly affects the quality of the resulting density

estimate. Generally, the kernels K used should have the following properties:

– Symmetry, i.e., K(u) = K(−u)

–
∫∞
−∞ K(u) du = 1

–
∫∞
−∞ ujK(u) du = 0 for j = 1, . . . , k − 1

–
∫∞
−∞ ukK(u) du ̸= 0

These properties imply that K is an even function and that f̂N(x) is a probability density

function, i.e.,
∫∞
−∞ f̂N(x) dx = 1. Common kernel functions used in kernel Density

Estimation include:

– Gaussian Kernel: K(u) = 1√
2π
e−

u2

2

– Epanechnikov Kernel: K(u) = 3
4
(1− u2) for |u| ≤ 1

– Uniform Kernel: K(u) = 1
2

for |u| ≤ 1

– Triangular Kernel: K(u) = (1− |u|) for |u| ≤ 1

As KDE offers a balance between smoothness, accurate estimation, and flexibility when

the smoothing parameter is appropriately optimized we will further explore it in the subsequent

section.
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1.2.2 Kernel Density Estimation (KDE)

As noted by [DiNardo and Tobias, 2001], the choice of kernel function in kernel density

estimation appears to have a relatively minor impact on the resulting estimate. The variety

of kernel functions listed in the previous section can typically produce similar-looking density

estimates. However, the choice of bandwidth is more critical. The efficiency of kernel density

estimation (KDE) is highly dependent on the value of the smoothing parameter, which must be

optimized. Several methods have been developed in the literature to optimize hN . In the next

section, we will review some of the most used bandwidth optimization approaches.

1.2.2.1 Kernel bandwidth optimization

The bandwidth parameter hN controls the degree of smoothing applied to the data in kernel

density estimation. A smaller hN leads to an estimator with low bias but high variance,

capturing finer details but potentially introducing noise. Conversely, a larger hN results in

high bias and low variance, smoothing out details and reducing noise but potentially obscuring

important features.

The goal is to find the optimal hN that balances bias and variance. This optimal value,

denoted by h∗
N , represents the bandwidth that minimizes the overall error between the estimated

density and the true underlying density.

One common metric for evaluating the quality of the estimate is the mean integrated squared

error (MISE). The optimal h∗
N corresponds to the value that minimizes the MISE.

The MISE is calculated using the following formula:

MISE = E

[∫ +∞

−∞

(
f̂N(x)− f(x)

)2
dx

]

The Appendix 4.6 details the mathematical foundation for Bandwidth optimization. The

optimal bandwidth h∗
N is expressed by the equation A.4
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h∗
N = N− 1

5 (J(f))−
1
5 (M(K))

1
5

where M(K) is the integral of the squared kernel function:

M(K) =

∫ +∞

−∞
K2(u)du

and J(f) is f” is the second derivative of f .

J(f) =

∫ +∞

−∞
(f”(x))2dx

M(K) is straightforward to compute. The only term in h∗
N that is difficult to calculate is

J(f) since it depends on f , the unknown density function to be estimated.

Several researchers were interested in bandwidth optimization, we will develop in the next

section the most popular ones.

a) Cross-Validation in Bandwidth Optimization: Several cross-validation approaches are

used to optimize the bandwidth h in kernel density estimation [Hall and Marron, 1987] . One

common approach is the Least Squares Cross-Validation (LSCV) method [Bowman, 1984],

which seeks to minimize the Integrated Squared Error (ISE). The ISE is defined as:

ISE =

∫ ∞

−∞
[f̂h(x)− f(x)]2 dx,

where f̂h(x) is the kernel density estimate and f(x) is the true underlying density function.

LSCV minimizes the ISE by approximating it through:

LSCV (h) =

∫ ∞

−∞
f̂ 2
h(x) dx−

2

n

n∑
i=1

f̂−i(xi),

where f̂−i(x) is the leave-one-out kernel estimate. The optimal bandwidth h∗ is the one

that minimizes this LSCV function, providing an unbiased estimator for the density. This
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method, while effective, can be sensitive to sample variations, leading to multiple local minima,

which complicates the selection of h. Other methods, such as Biased Cross-Validation (BCV)

[Scott and Terrell, 1987] and Smoothed Cross-Validation (SCV)[Hall and Marron, 1991], offer

alternatives that address some of these limitations.

b) Rule of Thumb (ROT) Methods in Bandwidth Selection: The Rule of Thumb (ROT)

method, developed by Deheuvels in 1977 [Deheuvels, 1977], offers a simple approach for

bandwidth selection by assuming a reference distribution to estimate the unknown density.

Typically, the normal distribution is used, with its parameters estimated from the sample. The

optimal bandwidth ĥrot for a sample size N is given by:

ĥrot = 1.06δ̂NN
− 1

5 ,

where δ̂N is the sample standard deviation. In other works, such as in [Härdle, 1991] , the

standard deviation δ̂N is replaced by the interquartile range R, leading to an alternative form of

the optimal bandwidth:

ĥrot = 1.06min(δ̂N ,
R̂

1.34
)N− 1

5 .

[Terrell, 1990] proposed an upper bound for the bandwidth, called the Maximal Smoothing

Parameter (MSP), based on a lower bound for the functional J(f), yielding:

ĥMSP = 3

(
35

M(K)

) 1
5

δ̂NN
− 1

5 .

While Rule of Thumb methods are generally robust for unimodal distributions, they can

provide suboptimal results for multimodal distributions.

c) Plug-in Method The Plug-in algorithm [Hall et al., 1992] [Delaigle and Gijbels, 2002]

[Park and Marron, 1990] is an algorithm that estimates J(f) over successive iterations until

convergence is achieved. These algorithms are straightforward to implement and generate
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interesting results for both unimodal and multimodal densities. The general procedure of the

Plug-in algorithm is outlined in figure 1.1 and the following pseudo-code 1.

Figure 1.1: Schematic representation of the Plug-in algorithm

Algorithm 1 Standard Plug-in Algorithm

1: Determine M(K)
2: Initialize J (0)(f)

3: Compute h
(0)
N

4: Estimate f (0) (the initial estimate of f )

5: while
|h(k)

N − h
(k−1)
N |

h
(k)
N

> 0.01 do

6: Calculate J (k)(f)

7: Compute h
(k)
N

8: Estimate f using h
(k)
N

9: end while
10: Return hN

d) Comparison of Bandwidth Optimizers In this section, we compare three bandwidth

selection methods for Kernel Density Estimation (KDE): Plug-in, Rule of Thumb (ROT), and

Cross-Validation (CV). Using a bimodal distribution generated from three normal distributions

with varying means and variances. The first distribution has a mean of 0.75 and variance 0.01,

the second has a mean of 0.5 and variance 1, and the third has a mean of 1.75 and variance 0.01.
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Table 1.1: MISE values for different bandwidth selection methods.

Plug-in ROT CV
MISE 0.0175 0.0561 0.1226

The true probability density function (PDF) is computed as a combination of these distributions,

and the Mean Integrated Squared Error (MISE) for each method is calculated to assess accuracy.

The MISE values are summarized in Table 1.1.

For this mixture, the results indicate that the Plug-in method provides the most accurate

density estimate, significantly outperforming the ROT and CV methods. The performance of

each method is visualized in Figure 1.2, illustrating the estimated densities against the true

density.

Figure 1.2: Comparison of Bandwidth Optimizers

Thus, in this research, we will be particularly interested in the plug-in algorithm.

1.2.2.2 KDE’s variants

Beyond the classic KDE, several variants have been developed to enhance its performance in

different scenarios.
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• The Adaptive Kernel Density Estimation approach, as detailed by [Van Kerm, 2003],

adjusts the bandwidth locally based on the density of the data, offering finer resolution in

regions with high data concentration and smoother estimates where data are sparse.

• The Robust Kernel Density Estimator, introduced by [Kim and Scott, 2012], aims to

mitigate the influence of outliers, ensuring that the density estimate remains stable even

in the presence of aberrant data points.

• the Diffeomorphic Kernel Density Estimation (DKDE) introduced by [Saoudi et al.,

1997] generalizes the kernel density estimation by applying diffeomorphic transforma-

tions, ensuring smooth and invertible mappings and improving boundary behavior.

• the Fast Kernel Density Estimator (FKDE), proposed by [Troudi et al., 2008], is a com-

putationally efficient variant that reduces the complexity of KDE by employing analytical

approximations, making it particularly suitable for large datasets while maintaining

accuracy in density estimation. It uses the Fast Plug-in algorithm, which iteratively

estimates the optimal bandwidth while minimizing the Mean Integrated Squared Error

(MISE). This approach significantly reduces the computational complexity, avoiding the

need for multiple density estimations.

1.3 Expectation-Maximization: Algorithmic Foundations

and Variants

The Expectation-Maximization (EM) algorithm is a widely used iterative method for finding

maximum likelihood estimates (MLE) of parameters in statistical models, particularly when the

data is incomplete or has missing values. Originally introduced by Dempster, Laird, and Rubin

in 1977, the EM algorithm has become a foundational tool in many statistical fields [Dempster

et al., 1977]. It operates by alternating between two key steps: the Expectation (E) step, which

computes the expected value of the log-likelihood function with respect to the current estimate

of the distribution of the missing data, and the Maximization (M) step, which maximizes this

expected log-likelihood to update the parameters.
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However, it is important to note that the EM algorithm only guarantees convergence to a

local maximum of the likelihood function, which may not be the global maximum [Dempster

et al., 1977]. Despite this limitation, the EM algorithm’s flexibility and robustness make it a

popular choice in various applications, including clustering, image processing, and machine

learning.

The EM algorithm has several variants designed to address its limitations in different

scenarios. In this section, we discuss some popular variants, including Monte Carlo EM

(MCEM), Variational EM, Online EM, Bayesian EM, and Generalized EM (GEM).

1.3.1 Introduction to Maximum Likelihood Estimation (MLE)

The Expectation-Maximization (EM) algorithm is fundamentally based on the principle of

Maximum Likelihood Estimation (MLE). In this framework, the observed data y1, . . . , yN are

treated as realizations of a random variable Y within a range R, while the values x1, . . . , xN are

considered as realizations of a latent variable X with values in Ω = {1, . . . , K}.

In the context of a mixture model, the observations y1, . . . , yN are assumed to be

independent realizations of a random variable Y , which follows a parameterized density

function. The goal of MLE is to estimate the parameters that maximize the likelihood of

observing the given data. The likelihood function for a mixture model can be expressed as:

P (y|ϕ) =
K∑
k=1

πkP (y|xk, ϕk), (1.7)

where K denotes the number of mixture components, πk are the mixing coefficients with∑K
k=1 πk = 1 and 0 ≤ πk ≤ 1, and P (y|xk, ϕk) represents the density function of the k-th

mixture component.

The objective is to estimate the parameter set ϕ = {π1, . . . , πK , ϕ1, . . . , ϕK} that maximizes

the likelihood function. The joint likelihood of the observed data is given by:

P (Y, ϕ) =
N∏
i=1

P (yi|ϕ). (1.8)
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MLE aims to find the parameter set ϕ̂ that maximizes this joint likelihood, which is

equivalent to maximizing the log-likelihood function:

L(Y, ϕ) =
N∑
i=1

logP (yi|ϕ). (1.9)

The gradient of the log-likelihood function with respect to the parameters ϕk can be

expressed as:

∇ϕk
L =

N∑
i=1

1

P (yi|ϕk)
∇ϕk

(
K∑
k=1

πkP (yi|xk, ϕk)

)
. (1.10)

To simplify, the gradient can be rewritten using the posterior probability P (xk|yi, ϕ):

∇ϕk
L =

N∑
i=1

P (xk|yi, ϕ)∇ϕk
logP (yi|xk, ϕk), (1.11)

where:

P (xk|yi, ϕ) =
πkf(yi|xk, ϕk)

P (yi|ϕ)
. (1.12)

The parameter ϕ̂k that maximizes the log-likelihood function must satisfy:

∇ϕk
L =

N∑
i=1

P (xk|yi, ϕ)∇ϕk
logP (yi|xk, ϕk) = 0, k = 1, . . . , K. (1.13)

Given the complexity of the likelihood function, finding an analytical solution is often

difficult. Therefore, iterative numerical methods, such as the EM algorithm, are employed

to approximate the solution [Dempster et al., 1977].

1.3.2 The Univariate EM Algorithm

The univariate EM algorithm is a simplified version of the general EM framework, applied

to models with a single observed variable. This version of the EM algorithm is useful for
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introducing the core concepts before extending them to more complex multivariate cases. In

the univariate case, we denote the probability P (y|xk, ϕk) by the density function f(y, ϕk). The

EM algorithm operates under the principle that maximizing the complete likelihood L((y, x), ϕ)

is more straightforward than maximizing the marginal likelihood L(y, ϕ). The relationship

between these likelihoods is:

L(y, ϕ) = L((y, x), ϕ)−
N∑
i=1

logP (xi|yi, ϕ). (1.14)

However, because x is unknown, the complete likelihood is challenging to compute. To

address this, Dempster, Laird, and Rubin proposed an iterative procedure that maximizes the

expected complete log-likelihood given the current parameter estimates. The iterative process

involves constructing a sequence {ϕ(q)} that satisfies:

ϕ(q+1) = argmax
ϕ

Q(ϕ|ϕ(q)), (1.15)

where Q(ϕ|ϕ(q)) is the expected log-likelihood:

Q(ϕ|ϕ(q)) = E[L((y, x), ϕ)|y, ϕ(q)]. (1.16)

Let P (q)
jk = P (xk|Y = yj, ϕ

(q)) denote the posterior probability of the k-th component given

the j-th observation at iteration q. The expected log-likelihood can be written as:

Q(ϕ|ϕ(q)) =
N∑
i=1

K∑
k=1

P
(q)
ik log(πkf(yi, ϕk)). (1.17)
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Algorithm 2 EM Algorithm

1: Initialize parameters ϕ(0) with initial guesses
2: repeat
3: E-step: Compute posterior probabilities P (q)

ik using current parameters ϕ(q)

4: M-step: Update parameters ϕ(q+1) to maximize the expected log-likelihood function
Q(ϕ|ϕ(q))

5: Update iteration index q ← q + 1
6: until Convergence criterion is met (e.g., changes in log-likelihood or parameters are below

a predefined threshold)

This iterative process continues until the algorithm converges to a set of parameter estimates

that maximize the likelihood function given the observed data or until the stop condition is

achieved (for example a limited number of iterations).

Having established the general framework of the EM algorithm, we now delve into the

specifics of its components.

1.3.2.1 Initialization of the EM Algorithm

Before delving into the iterative process of the EM algorithm, it is crucial to address the

initialization of the parameters. The initial values of the parameters, denoted by ϕ(0), play

a significant role in the convergence and performance of the EM algorithm. Poor initialization

can lead to suboptimal solutions, slow convergence, or even convergence to incorrect parameter

values.

Several initialization methods are commonly used in practice:

• Random Initialization: The parameters are randomly chosen from a specified range.

Although simple, this approach may lead to variability in the results and requires multiple

runs to ensure robustness [Kwedlo, 2015].

• K-means Clustering: The K-means algorithm is first applied to the data to assign initial

cluster memberships. The resulting cluster centers and proportions are then used to

initialize the parameters of the mixture components [Chelangat and Afullo, 2023]
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• Hierarchical Clustering: Hierarchical clustering can be employed to group the data into

clusters. The centroids and the distribution within each cluster are used to initialize the

parameters [Scrucca and Raftery, 2015]

• Quantile-Based Initialization: In cases where the data is assumed to follow a specific

distribution, initial parameters can be set based on quantiles or other statistical properties

of the distribution [Mari and Baldassari, 2022]

• Multiple Runs: To mitigate the effects of poor initialization, multiple runs of the EM

algorithm with different initial values are often performed, selecting the run that produces

the highest likelihood [Biernacki et al., 2003]

Another critical parameter to initialize in the EM algorithm is the number of components.

The random selection of this number can be unreliable and may result in poor convergence. To

address this challenge, one effective technique is the Elbow method.

The Elbow method first introduced by [Thorndike, 1953], is a widely used approach to

determine the optimal number of clusters within a dataset. This method evaluates the within

cluster sum of squares (WCSS) as a function of the number of clusters. The WCSS is defined

as:

WCSS =
K∑
k=1

∑
x∈Ck

∥x− µk∥2, (1.18)

where K is the number of clusters, Ck represents the k-th cluster, x is a data point within

cluster Ck, and µk is the centroid of cluster Ck.

In this approach, the WCSS is plotted against the number of clusters. The point at which the

decrease in WCSS starts to slow down significantly is referred to as the "elbow" point, indicating

the optimal number of clusters. This balance between cluster compactness and separation helps

avoid overfitting or underfitting the data.

As Melnykov concluded in his research [Melnykov and Melnykov, 2012], no single ini-

tialization strategy consistently outperforms others in all scenarios. Therefore, the choice of
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initialization strategy should be based on the specific characteristics of the dataset and the

underlying distribution of the data.

Once the initialization strategy is chosen and the parameters initialized, the EM algorithm

proceeds with the iterative process. In each iteration, the Expectation step (E-step) and the Max-

imization step (M-step) are performed to refine the parameter estimates, gradually improving

the likelihood function. The initial parameter values serve as the starting point for this iterative

refinement.

By establishing a solid foundation through appropriate initialization, the EM algorithm

can effectively converge to an optimal solution. The following sections will explore the key

components of the EM algorithm, starting with the E-step, where the expected value of the

log-likelihood is calculated.

1.3.2.2 Expectation Step

Given the current estimate of the parameter θ(t), the E-step involves calculating the expected

value of the log-likelihood function, with respect to the conditional distribution of the missing

data, given the observed data and the current parameter estimates. For a univariate Gaussian

model, this expectation can be expressed as:

Q(θ|θ(t)) = E[logL(θ|X,Z)|X, θ(t)]

where L(θ|X,Z) represents the likelihood function, X is the observed data, and Z denotes

the latent or missing data [Dempster et al., 1977].

In this context, for a mixture model, the posterior probability that the j-th observation

belongs to the k-th component (i.e., P (q)
jk = P (xk|yj, ϕ(q))) is computed as follows:

P
(q)
jk =

π
(q−1)
k f(yj|ϕ(q−1)

k )∑K
l=1 π

(q−1)
l f(yj|ϕ(q−1)

l )
(1.19)
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Here, P (q)
jk is the responsibility that the k-th component takes for explaining the j-th obser-

vation, π(q−1)
k is the prior probability of the k-th component, and f(yj|ϕ(q−1)

k ) is the probability

density of yj given the k-th component at the previous iteration q − 1.

1.3.2.3 Maximization Step

In the M-step, the algorithm aims to maximize the expected log-likelihood function computed

during the E-step to update the parameter estimates. Specifically, the new parameter estimate

θ(t+1) is obtained by solving:

θ(t+1) = argmax
θ

Q(θ|θ(t))

where Q(θ|θ(t)) is the expected log-likelihood function from the E-step. This maximization

step is iteratively performed until convergence, which is typically determined by the change in

the log-likelihood or the parameter estimates falling below a predefined threshold [Dempster

et al., 1977].

The parameters πk and ϕk are updated as follows: For the mixture weights πk:

π
(q)
k =

∑N
i=1 P

(q)
ik

N
(1.20)

where P
(q)
ik represents the posterior probability that the i-th observation belongs to the k-th

component at the q-th iteration.

For the component-specific parameters ϕk:

ϕ
(q)
k = argmax

ϕk

N∑
i=1

P
(q)
ik log(πkf(yi|ϕk)) (1.21)

Here, f(yi|ϕk) denotes the probability density function of the i-th observation given the k-th

component’s parameters.

The convergence of the algorithm is typically assessed by monitoring the relative change in

the log-likelihood:
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logLq+1 − logLq

logLq

≤ ϵ (1.22)

where logLq and logLq+1 are the log-likelihood values at iterations q and q+1, respectively,

and ϵ is a small threshold value.

The application of the EM algorithm varies depending on the specifics of the mixture model

being used.

1.3.2.4 Convergence and Limitations

The univariate EM algorithm is relatively simple to implement. It guarantees convergence to a

local maximum but does not necessarily reach the global maximum [McLachlan and Krishnan,

2007]. This limitation can be mitigated in practice by using different initializations or applying

more advanced variants of the algorithm.

1.3.3 EM Algorithm Variants

In addition to the well-known Expectation-Maximization (EM) algorithm, several variants have

been developed to address specific challenges or enhance the algorithm’s capabilities. Below,

we discuss some notable variants.

1.3.3.1 Stochastic EM Algorithm

To address the potential issue of the EM algorithm stabilizing at a local maximum, Celeux et al.

[Celeux and Diebolt, 1985] introduced a stochastic element before the maximization step. This

variant, known as the Stochastic EM (SEM) algorithm, uses the estimated posterior distribution

from the EM algorithm to simulate a set of realizations according to this distribution [Celeux

et al., 1996]. By using this stochastic simulation, the SEM algorithm prevents the parameter

estimates from stabilizing at a single point, except for the point that maximizes the likelihood.

A further variant, known as Simulated Annealing EM (SAEM), was proposed by Delyon,

Lavielle, and Moulines [Delyon et al., 1999]. In SAEM, the parameters estimated during
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the maximization phase are a weighted average between the EM and SEM estimates. Over

the iterations, these weights evolve, gradually emphasizing the EM estimate as the algorithm

progresses.

Algorithm 3 SAEM Algorithm
1: Initialization: Select an upper bound for the number of classes. Initialize weights and

marginal distribution parameters similarly to the EM algorithm.
2: repeat
3: E-step: Compute the posterior probabilities based on the current parameters.
4: S-step: Generate a Bernoulli random variable using the posterior probabilities from the

E-step.
5: A-step: Construct another random variable to adjust the posterior probabilities.
6: M-step: Replace the posterior probabilities in the EM algorithm’s maximization

equations with the constructed variable.
7: until Convergence criterion is met (e.g., parameter estimates or log-likelihood changes are

below a predefined threshold)

SAEM combines the stochastic nature of SEM with the robust convergence properties of

EM, offering a balance between exploration of the parameter space and convergence to the

global maximum [Delyon et al., 1999].

1.3.3.2 Monte Carlo EM (MCEM)

The Monte Carlo EM (MCEM) algorithm was developed to address scenarios where the E-step

of the standard EM algorithm becomes computationally intractable due to the complexity of the

expectation calculation[Wei and Tanner, 1990]. In such cases, the MCEM algorithm approxi-

mates the expected value by drawing samples from the posterior distribution, utilizing Monte

Carlo simulations.

The key idea behind MCEM is to replace the exact expectation in the E-step with an approx-

imation derived from a set of samples. Specifically, given a current estimate of the parameters,

the algorithm generates a sample from the posterior distribution of the latent variables and then

uses this sample to compute an empirical average. This average serves as an approximation of

the expectation required for the M-step.

The steps involved in the MCEM algorithm can be summarized as follows:
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Algorithm 4 Algorithm with Monte Carlo Simulation

1: Initialization: Start with an initial estimate of the parameters, denoted as θ(0).
2: repeat
3: E-Step (Monte Carlo Simulation):
4: At the q-th iteration, draw a sample {z(q,1), z(q,2), . . . , z(q,m)} from the posterior

distribution P (z | x, θ(q−1)).
5: Approximate the expectation in the E-step by the empirical mean:
6:

Q(θ | θ(q−1)) ≈ 1

m

m∑
j=1

logP (x, z(q,j) | θ).

7: M-Step:
8: Maximize the approximated expected log-likelihood with respect to the parameters:
9:

θ(q) = argmax
θ

Q(θ | θ(q−1)).

10: until Convergence criterion is met (e.g., change in parameter estimates between successive
iterations falls below a predetermined threshold)

The advantage of MCEM is its flexibility in dealing with complex models, particularly when

direct computation of the expectation is difficult or impossible. However, the accuracy of the

MCEM algorithm is based upon the quality and quantity of the Monte Carlo samples. As such,

increasing the number of samples can improve the approximation but at the cost of increased

computational effort.

1.3.3.3 Variational EM

The Variational EM algorithm is another variant designed to handle cases where the E-step of

the standard EM algorithm is difficult to compute. Instead of using Monte Carlo simulations like

in MCEM, the Variational EM approach approximates the posterior distribution by a simpler

distribution from a specified family [Beal, 2003]. This distribution is parameterized, and the

parameters are optimized to make the approximation as close as possible to the true posterior.

In the Variational EM algorithm, the E-step involves optimizing a lower bound on the

log-likelihood, known as the Evidence Lower BOund (ELBO), rather than the exact log like-

lihood. The M-step remains similar to that of the standard EM algorithm, where the parameters

are updated to maximize the approximate lower bound.
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The steps of the Variational EM Algorithm :

Algorithm 5 Variational EM Algorithm

1: Initialization: Start with an initial estimate of the parameters θ(0) and an initial choice of
the variational parameters.

2: repeat
3: E-Step (Variational Inference):
4: At each iteration, optimize the variational parameters to maximize the Evidence

Lower Bound (ELBO), which serves as a lower bound to the log-likelihood.
5: M-Step:
6: Update the model parameters by maximizing the ELBO with respect to θ:
7:

θ(q) = argmax
θ

ELBO(θ, variational parameters).

8: until Convergence criterion is met (e.g., changes in ELBO or parameters fall below a
predetermined threshold)

The advantage of the Variational EM algorithm lies in its ability to handle high-dimensional

latent variable models more efficiently than the standard EM algorithm, although it introduces

approximation errors due to the use of a variational distribution.

1.3.3.4 Online EM

The Online EM algorithm is designed for scenarios where data arrive sequentially, and it is

impractical to reprocess the entire dataset at each iteration [Cappé and Moulines, 2009]. Unlike

the standard EM algorithm, which processes the entire dataset at each iteration, Online EM

updates the model parameters incrementally as new data points become available.

The Online EM algorithm can be summarized as follows:

Algorithm 6 Online EM Algorithm

1: Initialization: Begin with an initial estimate of the parameters θ(0).
2: while Data is available do
3: E-Step: For each incoming data point, compute a partial expectation using the current

model parameters.
4: M-Step:
5: Update the parameters incrementally based on the partial expectation:
6:

θ(q) = θ(q−1) + α(q) · Gradient,

where α(q) is a learning rate that decreases over time.
7: end while
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Online EM is particularly useful for large-scale data applications where it is crucial to update

the model in real-time without the need to store and reprocess large amounts of data.

1.3.3.5 Bayesian EM

The Bayesian EM algorithm is an extension of the standard EM algorithm within a Bayesian

framework. Instead of finding point estimates of the parameters, Bayesian EM seeks to estimate

the posterior distribution over the parameters given the data.

In the Bayesian EM algorithm, the M-step involves determining the mode of the posterior

distribution, also known as the maximum a posteriori (MAP) estimate. The E-step remains

similar, where the expected value is taken with respect to the posterior distribution of the latent

variables.

The Bayesian EM algorithm can be summarized as follows:

Algorithm 7 Bayesian EM Algorithm
1: Initialization: Start with an initial estimate of the prior distribution over the parameters.
2: while Convergence criterion not met do
3: E-Step: Compute the expected value of the complete data log-likelihood with respect

to the posterior distribution of the latent variables.
4: M-Step: Maximize the posterior distribution to obtain the MAP estimate:
5:

θ(q) = argmax
θ

P (θ | data).

6: end while

Bayesian EM provides a more robust approach by incorporating prior information and

uncertainty about the parameters, making it particularly valuable in cases where data is sparse

or noisy.

1.3.3.6 Generalized EM (GEM)

The Generalized EM (GEM) algorithm is a flexible variant of the standard EM algorithm that

allows for approximate maximization in the M-step. Instead of requiring the M-step to find the

exact maximum of the expected complete data log-likelihood, GEM permits any update that

increases the likelihood.
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The GEM algorithm is useful in situations where the M-step is computationally expensive

or difficult to solve exactly. By allowing approximate updates, GEM can converge more quickly

and handle a broader class of models.

The steps in the GEM algorithm are as follows:

Algorithm 8 Generalized EM Algorithm

1: Initialization: Start with an initial parameter estimate, θ(0).
2: while Convergence criterion not met do
3: E-Step: Compute the expected complete data log-likelihood given the current

parameters to proceed to the next step.
4: M-Step (Generalized Maximization): Update the parameters to increase the

likelihood, even if the exact maximum is not reached, for better accuracy.
5:

Q(θ(q) | θ(q−1)) ≥ Q(θ(q−1) | θ(q−1)).

6: end while

The flexibility of GEM makes it a powerful tool in applications where strict maximization

is hard to achieve, providing a balance between computational efficiency and accuracy.

1.3.3.7 Conclusion

Having reviewed various EM algorithm variants, we will introduce a new EM variant in the

following chapter 2. This new approach is designed to identify non-Gaussian mixture on a

bounded support.

1.4 Regression Evaluation metric

Due to the absence of a "gold standard" evaluation metric, researchers have continuously devel-

oped new metrics in search of more effective solutions. As a result, the literature is filled with

evaluation metrics, many of which remain unknown and understudied, while no universally

optimal metric has yet been identified. The researchers have not been able to agree upon a

single, universal evaluation metric because each has advantages and disadvantages that highlight

different aspects of the model’s error characteristics [Makridakis et al., 2022]. However, they
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did agree that a single evaluation metric is not enough to properly assess the model’s perfor-

mance. In 2014, Chai and his colleague highlighted the limitations of relying on a single metric.

They noted that individual metrics provide a limited perspective of the model’s errors.[Chai and

Draxler, 2014]

Therefore, the selection of the suitable set of metrics depends mainly on the nature of the

algorithm and the desired properties to assess and highlight, as different metrics may produce

different rankings of the model performance.

In this section, we will focus on evaluation metrics applied in regression analysis. The as-

sessment of regression models usually depends on their capacity to forecast continuous results,

and the selection of the evaluation criteria is essential as it directly impacts the evaluation of

model effectiveness. We will only present the most popular used metrics

1.4.1 Error-Based Metrics

Error metrics are fundamental tools for evaluating regression models, offering clear assessments

of the difference between predicted and actual values. These metrics facilitate straightforward

interpretation and comparison across different models.

1.4.1.1 Traditional Metrics

Traditional error-based metrics are among the most frequently used methods for evaluating

regression models. These metrics provide insights into a models predictive accuracy by quan-

tifying the difference between actual and predicted values from a single iteration of the model.

While they offer a quick and accessible measure of performance, they may not fully capture the

variability of the model across different runs or data splits.

One of the earliest and most widely used metrics is the Mean Squared Error (MSE), which

calculates the average squared difference between predicted and actual values. This metric

places more weight on larger errors making it sensitive to outliers. As extreme values dispropor-

tionately influence the metric, they potentially distort the overall evaluation [Wang and Bovik,

2009]. The Root Mean Squared Error (RMSE) extends MSE by taking the square root of the
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mean squared errors enhancing its interpretability by aligning the error metric with the original

data units. RMSE is particularly favored in time series forecasting and for comparing model

performance on identical datasets [Kumbure et al., 2022]. Despite its widespread use, RMSE

retains the outlier sensitivity inherent in MSE, which can limit its effectiveness in datasets with

high variability.

Alternatively, the Mean Absolute Error (MAE) calculates the average of the absolute differ-

ences between predicted and actual values. Unlike MSE and RMSE, MAE treats all errors

equally without squaring them, making it less sensitive to outliers and a robust choice for

scenarios where balanced error representation is required. MAE is simple to interpret, as

it shares the same units as the original data, but its lack of sensitivity to data variance can

be a limitation in some analyses. Consequently, as suggested by researchers such as Chai

et al. (2014) [Chai and Draxler, 2014], a robust evaluation of a model’s performance often

necessitates the use of multiple metrics, including RMSE and MAE.

A further refinement is the Median Absolute Error (MdAE), a variation of MAE that uses

the median of absolute errors instead of the mean. This modification minimizes the impact of

outliers even more effectively, making MdAE a robust measure of central tendency, particularly

valuable in datasets with unbalanced error distributions. MdAE is preferred in situations where

the median offers a more accurate reflection of typical errors, as highlighted in studies like those

by Yin et al. [Yin and Xie, 2021].

1.4.1.2 Normalized Error Metrics

Normalized error metrics offer scale-independent evaluations, allowing for equitable compar-

isons across different datasets and models. The Normalized Mean Squared Error (NMSE)

evaluates the mean squared error relative to the variance of the target variable. This makes it

particularly valuable in applications such as climate modeling, where performance comparisons

across regions with varying climate variability are necessary [Tcheou et al., 2021]. While Mean

Absolute Scaled Error (MASE) emphasizes absolute errors and is highly regarded for its con-

sistent behavior across varying scales [Hyndman and Koehler, 2006], the Root Mean Squared
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Scaled Error (RMSSE) scales the RMSE by a benchmark error, highlighting predictions that

closely align with the mean [Ramos and Oliveira, 2023]. Both metrics are symmetrical, penal-

izing positive and negative forecast errors equally.

Weighted metrics like the Weighted Root Mean Squared Error (wRMSE) and Weighted

Mean Absolute Error (wMAE) introduce weights to error terms, enabling the prioritization

of certain errors based on their significance. This approach is particularly useful in scenarios

where the importance of errors varies across data points [Cleger-Tamayo et al., 2012]. Similarly,

the Weighted Root Mean Squared Scaled Error (WRMSSE), which normalizes each error term

by the weighted error of a baseline model, has been employed in competitive settings, such as

the M5 competition, to provide a nuanced evaluation of model performance [Makridakis et al.,

2022].

The Mean Relative Absolute Error (MRAE) provides a relative error evaluation by compar-

ing the mean of absolute errors to actual values, offering a normalized perspective on model

performance. This metric is particularly useful for datasets with varying scales, as it accounts

for the magnitude of the data, providing a balanced evaluation of prediction accuracy [Lin and

Finlayson, 2021].

1.4.2 Percentage-Based Metrics

Percentage-based metrics are useful for assessing the relative accuracy of regression models,

particularly when proportional errors are more critical than absolute differences. These metrics

express errors as a percentage of the actual values, facilitating meaningful comparisons across

datasets with varying scales. The Mean Absolute Percentage Error (MAPE) is a widely adopted

metric, especially in fields like business and economics, where relative measures of gains and

losses are essential [Gneiting, 2011]. It calculates the average absolute percentage difference

between predicted and actual values, making it intuitive and accessible even to non-experts

[De Myttenaere et al., 2016]. Despite its popularity, MAPE has limitations, particularly with

data containing values close to zero, which can result in extremely large or undefined values

[Kim and Kim, 2016]. To address these issues, the Symmetric Mean Absolute Percentage
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Error (sMAPE) was developed. sMAPE improves upon MAPE by dividing the absolute error

by the sum of the actual and predicted values, reducing the impact of extreme values and

addressing some of MAPE’s limitations. However, it can still exhibit asymmetry, often pe-

nalizing positive errors more than negative ones [Goodwin and Lawton, 1999]. Although not

strictly percentage-based, the Mean Magnitude of Relative Error (MMRE) is used in software

effort estimation but can be unreliable, often favoring models that systematically under-forecast

[Jørgensen et al., 2022].

1.4.3 Variance Metrics

Variance metrics play a crucial role in evaluating how well a regression model captures the

variability of the target variable, providing insights into the model’s effectiveness in fitting the

data and explaining underlying patterns. The coefficient of determination, commonly known

as R2, is a widely used metric that measures the proportion of variance in the target variable

that is explained by the regression model. Mathematically, R2 represents the ratio of explained

variance to total variance, with values ranging from 0 to 1, where a higher R2 indicates a better

model fit. Chicco (2021) [Chicco et al., 2021] recommends using R2 as a standard measure

in regression analysis, acknowledging its widespread acceptance. Despite its popularity, R2

has a key limitation: it tends to increase with the addition of more features, regardless of their

actual predictive power, which can lead to overfitting and poor performance on unseen data. To

address the overfitting issue associated with R2, the Adjusted R2 metric incorporates a penalty

for the number of predictors in the model. Unlike R2, which always remains the same or

increases with the addition of new predictors, Adjusted R2 can decrease if the new predictors

do not sufficiently enhance the model. This adjustment provides a more balanced evaluation of

model performance, accounting for both the goodness of fit and the model’s complexity, and

ensures that Adjusted R2 is always less than or equal to R2. This makes Adjusted R2 a more

reliable metric when comparing models with varying numbers of predictors, offering a clearer

assessment of model performance.
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1.4.4 Logarithmic Metrics

Logarithmic metrics are particularly useful for datasets composed of strictly positive values, as

they apply a logarithmic transformation to the errors, which helps manage large-scale variations

and provides a more balanced evaluation of model performance. The Mean Squared Logarith-

mic Error (MSLE) calculates the mean of the squared logarithmic differences between predicted

and actual values. This metric is designed to penalize underestimates more than overestimates,

making it especially valuable in contexts where underprediction is more critical than overpredic-

tion. Similarly, the Root Mean Squared Logarithmic Error (RMSLE) as presented in Liapis et al.

(2023) [Liapis et al., 2023], extends the MSLE by taking the square root of the mean squared

logarithmic errors, with an added constant of 1 to avoid undefined logarithms when dealing

with zero or near-zero values. This modification makes RMSLE more robust against outliers

and noise, providing a proportional penalty for large prediction errors, and is beneficial when

accurate lower-bound predictions are crucial. Both MSLE and RMSLE are useful in scenarios

where the target variable spans a wide range or where smaller errors are more significant than

larger ones, as highlighted by Hodson in 2021 [Hodson et al., 2021].

The Mean Absolute Logarithmic Error (MALE), on the other hand, computes the mean of

the absolute logarithmic differences between actual and predicted values. This metric, suited for

multiplicative scale datasets, uses absolute differences rather than squared differences, making

it less sensitive to large errors and outliers. As noted by Vamsi et al. (2021) [Vamsi Krishna

et al., 2021], The combination of mean and logarithmic differences in MALE contributes to

its robustness, offering a stable and interpretable measure for evaluating model performance,

particularly in datasets where relative differences are more meaningful than absolute ones.

1.4.5 Bias Metrics

Bias metrics evaluate the systematic tendencies of a model to consistently overestimate or un-

derestimate the target variable, helping to identify and correct biases that may skew predictions

and compromise model reliability. The Fractional Gross Error (FGE) evaluates the absolute

difference between predicted and actual values relative to their mean. It offers a more robust
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measure of bias compared to The Mean Bias (MB) by being less affected by cancellation

errors and providing a balanced assessment of both overestimation and underestimation. As

highlighted by Benedetti et al. (2019) [Benedetti et al., 2019], FGE is symmetric and less

sensitive to outliers, enhancing its effectiveness in bias assessment.

1.4.6 Relative Measures

Relative measures offer valuable insights into a model’s performance by comparing it to a

baseline, often the mean of the target variable, which helps in assessing its relative effectiveness.

The Log of the Accuracy Ratio (logAR) is a well-known metric in this category, as it compares

model performance to the mean of the target variable using a logarithmic transformation. As

highlighted by [Tofallis, 2015], logAR is a robust alternative to traditional metrics like MAPE,

effectively addressing issues with very small actual values that can distort MAPE and sMAPE.

This normalization offers a relative measure of error and allows comparison of prediction errors

relative to a baseline or reference model. Studies such as [Sudsawat et al., 2021] found The

Relative Mean Squared Error (RMRSE) to be more informative about true performance than

MSE. [Reich et al., 2016] focused on The Relative Mean Absolute Error (RMAE), noting

its simplicity and intuitive interpretation, compared to MAPE, which systematically favors

under-forecasting methods

1.4.7 Additional Evaluation Metrics

As mentioned in the introduction to this section, the literature on evaluation metrics is extensive,

covering a vast array of approaches. We have presented only a selective overview of some of the

most commonly used metrics. However, numerous other metrics exist, including distance-based

metrics, correlation-based metrics, Median Absolute Percentage Error (MdAPE), Akaike Infor-

mation Criterion (AIC), Bayesian Information Criterion (BIC), Fractional Bias (FB), Relative

Absolute Error (RAE), Relative Root Mean Squared Error (RelRMSE), and Explained Variance,

Geometric Mean Relative Absolute (GMRAE) among many others. Each of these metrics

serves different purposes and offers unique insights depending on the context of the evaluation.

UMA/ENSI 36



FUNDAMENTALS OF STATISTICAL ESTIMATION AND MODEL EVALUATION

1.4.8 Averaging Single-Iteration Metrics

Relying on a single iteration for assessing model performance is often inadequate for obtaining

a reliable estimate. To address this, researchers such as Bhandari et al. (2022) [Bhandari

et al., 2022] have explored the approach of averaging metrics obtained from multiple training

runs. In their study, Bhandari and colleagues replicated their experiments 30 times using three

evaluation metrics: RMSE, MAPE, and R2. They observed significant discrepancies between

the maximum and minimum values across these replications, which underscores a key limitation

of single-iteration metrics.

Running the model just once can produce results that significantly differ from the model’s

true performance, as model errors can be considered as a realization of a continuous random

variable. Bhandari’s experiments demonstrated this variability; for instance, in a single-layer

experiment with 10 neurons, the RMSE ranged from a minimum of 34.7 to a maximum of

77.5. While averaging across multiple runs can account for some variability, it may lose critical

details about model performance. The significant differences between extreme values observed

by Bhandari et al. suggest that performance variability may not be fully captured by averaging

alone. This underscores the need for more comprehensive evaluation methods.

1.5 Conclusion

This chapter explored the state of the art in various fields.

First, we explored the non-parametric probability density estimators, with a special focus

on the Kernel Density Estimator. We explored varied Bandwidth optimization methods, and

we were interested in the plugin method and the fast plugin method. We also presented some

variants of, KDE particularly fast KDE .

In the second part, we described the Expectation Maximization Algorithm, detailed its steps,

and discussed some of its variants.
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In the final section, we reviewed the state of the art of the regression’s evaluation metrics.

We covered some of the most popular metrics used and highlighted some of their limitation and

the need for a new method for evaluating algorithms.
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Chapter 2 Abstract

This chapter introduces the Diffeomorphism Expectation-Maximization (EMD) algorithm, a

novel variant of the EM algorithm tailored for handling bounded data. The chapter begins

with the integration of a logarithmic transformation into the standard EM framework, laying

the foundation for the EMD methodology. The EMD initialization and its mathematical under-

pinnings are discussed in detail, followed by experimentation on simulated datasets, including

two-, three-, and five-component mixture models, which demonstrate the effectiveness of the

algorithm.

The chapter also explores two key applications. The first application is ultrasound image

segmentation, where the EMD algorithm is compared to reference segmentation techniques

such as U-Net and edge detection. Various evaluation metrics, including Intersection over Union

(IoU), Dice Coefficient, Precision, Recall, and the Symmetric Hausdorff Distance, are used to

assess the algorithm’s performance on benign, malignant, and normal ultrasound images. The

second application focuses on Affine Multi-Scale Curve Registration (AMSCR) and the EM

algorithm, which combines affine transformations with multi-scale smoothing to align curves.

The AMSCR-EM uses the EM algorithm to identify the classes of relevant scales based on the

L2 distance. This approach is tested on benchmark datasets, such as MPEG-7 and KIMIA, to

validate its efficacy in shape retrieval and registration tasks.
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2.1 Introduction

The Expectation-Maximization (EM) algorithm, first developed by Dempster and his colleagues

in [Dempster et al., 1977], is a fundamental tool in statistical computing, extensively used for

estimating parameters in probabilistic models due to its solid statistical basis [McLachlan and

Krishnan, 2007]. The original paper by Dempster et al. [Dempster et al., 1977] has been cited

more than 73,000 times according to Google Scholar, underscoring its widespread influence.

Despite its popularity, traditional EM variants encounter challenges when dealing with data

bounded by finite support. Typically, these algorithms do not account for boundary constraints,

leading to estimates that may overflow beyond the data’s natural limits. This issue becomes

particularly problematic when there’s clustering near the boundaries [Zhang et al., 2004] or

when the data distribution deviates from the Gaussian assumption.

To overcome this limitation, we introduce a novel variant of the EM algorithmthe Diffeomor-

phism EM algorithm (EMD). This approach integrates the concept of diffeomorphism into the

EM framework, allowing it to respect the boundary constraints of the data. The main concept

of the EMD lies in the application of diffeomorphic mappings, which transform the original

bounded data space into an infinite domain. This ensures that the algorithm’s estimates remain

within the finite support, improving accuracy, particularly for non-Gaussian mixture models.

In this chapter, we explore the theoretical basis of the EMD algorithm and explain how it

differs from conventional EM methods. We also present a detailed performance evaluation of

the EMD algorithm through a series of simulations and real-world applications, particularly

focusing on its utility in ultrasound image segmentation. Ultrasound imaging, a common tool

in medical diagnostics, is known for its low contrast and high speckle noise, with pixel values

often clustering around zero [Saini et al., 2010]. This makes it an ideal candidate for evaluating

the effectiveness of EMD. The results demonstrate the robustness and efficiency of EMD

compared to existing EM variants, highlighting its effectiveness in parameter estimation and

mixture identification tasks.
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Finally, we applied the traditional EM algorithm to the Curve Registration problem, in con-

junction with an Affine Multi-Scale Algorithm (AMSCR). We evaluate this combined approach

across various datasets, showcasing its versatility and potential for broader applications.

2.2 Diffeomorphism Expectation Maximization Algorithm

The Diffeomorphism Expectation-Maximization (EMD) is composed of two main parts : the

EM algorithm which was extensively presented in sec1.3 and a diffeomorphism to be chosen

according to the nature of data and the final aim of the model. In this research, we chose the

logarithm transformation as the diffeomorphism.

2.2.1 Integration of Logarithmic Transformation and EM Algorithm

The integration of the logarithmic transformation into the EM algorithm involves applying

the transformation to the observed data. This approach transforms the data from a bounded

or semi-bounded support to an unbounded (infinite) support, which allows us to avoid the

overflowing issues that may arise during estimating near boundary values.

Consider a dataset {y1, y2, . . . , yn} where each yi > 0. The logarithmically transformed

data {z1, z2, . . . , zn} is defined as:

zi = log(yi), for i = 1, 2, . . . , n

In the special context of image processing, the logarithmic transformation is defined as:

log_transformed_image = log(1 + image)

where image represents the original pixel values, and log denotes the natural logarithm. The

addition of 1 ensures that the transformation is defined for all pixel values, including zero.
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2.2.2 EMD Initialisatiion

The EMD algorithm is well-adapted for unsupervised classification, particularly for identify-

ing mixture components. However, in unsupervised classification, the number of classes (or

components) is typically unknown. Instead of randomly selecting this value, which can lead to

inaccurate results, we employed the elbow method, to estimate the optimal number of classes.

By selecting the number of clusters at the elbow point, we provide an informed, reliable

initialization for the EM algorithm, ensuring better convergence and accuracy.

Once the optimal number of clusters is determined using the elbow method, we proceed

to estimate the remaining initial parameters for the EMD algorithm, namely the means and

variances. Specifically, we apply the k-means clustering algorithm with the previously identified

optimal number of clusters. The final result of the k-means algorithm provides an initial set

of parameters: the centroids of the clusters are used as the initial mean estimates, and the

variance within each cluster is computed and used as the initial variance estimates. These initial

parameters are then fed into the EMD algorithm to begin the iterative process of parameter

optimization for mixture model estimation.

2.2.3 the EMD Methodology

The EM algorithm is applied to the transformed data {z1, z2, . . . , zn}. The steps of the modified

EM algorithm incorporating the logarithmic transformation are as follows:

• Step 1: Apply the visualized Elbow method

– Choose from the plot the optimal number of class K

• Step 2: Apply Logarithmic Transformation

– Transform the observed data {y1, y2, . . . , yn} to {z1, z2, . . . , zn}.

• Step 3: Initialize Parameters with K-means

UMA/ENSI 43



THE DIFFEOMORPHISM EXPECTATION-MAXIMIZATION ALGORITHM

– apply the k-means clustering algorithm to initialize the parameters ϕ(0). The cen-

troids from k-means serve as initial estimates for the component means, and the

within-cluster variances are used to initialize the variance parameters in the EMD

algorithm.

• Step 4: Expectation Step (E-step)

– Compute the posterior probabilities P
(q)
ik for the transformed data, based on the

current parameter estimates ϕ(q).

P
(q)
ik =

π
(q−1)
k f(zi|ϕ(q−1)

k )∑K
l=1 π

(q−1)
l f(zi|ϕ(q−1)

l )

• Step 5: Maximization Step (M-step)

– Update the parameters ϕ(q+1) to maximize the expected log-likelihood function

Q(ϕ|ϕ(q)).

Q(ϕ|ϕ(q)) =
N∑
i=1

K∑
k=1

P
(q)
ik log(πkf(zi, ϕk))

• Step 6: Iteration

– Repeat the E-step and M-step iteratively until convergence is achieved. Conver-

gence can be defined as the point where the changes in the log-likelihood or the

parameter estimates fall below a predefined threshold, or when the maximum num-

ber of iterations is reached.

• Step 7: Apply the Inverse Diffeomorphic Transformation

– After the EM algorithm has converged and the parameters ϕ(q+1) have been esti-

mated for the transformed data {z1, z2, . . . , zn}, apply the inverse of the diffeomor-

phic transformation to revert the data back to the original space. This involves using

the inverse function of the diffeomorphism applied in Step 2. The transformed

parameters and results are then mapped back to the original data space to provide

meaningful results in the context of the original data.
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Algorithm 9 Pseudo-code for EMD

1: Input: Data {y1, y2, . . . , yn}
2: Utilize the Elbow method to determine the optimal number of clusters (K) visually.
3: Apply logarithmic transformation: zi = log(yi)
4: Initialize ϕ(0) using K-means
5: while Convergence criterion not met do
6: Compute posterior probabilities:

P
(q)
ik =

π
(q−1)
k f(zi|ϕ(q−1)

k )∑K
l=1 π

(q−1)
l f(zi|ϕ(q−1)

l )

7: Update parameters to maximize expected log-likelihood:

ϕ(q+1) = argmax
ϕ

N∑
i=1

K∑
k=1

P
(q)
ik log(πkf(zi, ϕk))

8: end while
9: Apply the inverse diffeomorphic transformation to revert the data back to the original space.

10: Return: Final parameter estimates ϕ in the original space.

The pseudo-code 9 represents the principal steps of the EMD algorithm.

By incorporating the logarithmic transformation into the EM algorithm and initializing

parameters using k-means and the elbow method, EMD benefits from a solid starting point

that can lead to faster convergence and more stable results.

2.3 Experimentation on simulated data

Initially, we evaluated our algorithm using various combinations of simulated data. We experi-

mented with varying: the number of components in the mixture, considering scenarios with two,

three and five distributions; the types of distributions within the mixture, including log-normal,

normal, and exponential distributions, among others. In the following section, we will present

some interesting results obtained from our experiments.

In all the scenarios discussed in the next section, the distributions are equally weighted

within the mixture. We generated a sample of 10,000 data points from each distribution. For

each scenario, we will provide a visual comparison by plotting the probability density functions

PDF of the theoretical distribution alongside the estimations obtained using the EM and EMD
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algorithms. In addition to this visual comparison, we will present a quantitative analysis by

calculating the Mean Integrated Squared Error MISE. The MISE was obtained based on 100

algorithm executions.

2.3.1 Two-Component Mixture Model

We began by evaluating our new algorithm on two distinct mixture models, each formed by

combining two distributions. In the first scenario, we generated a bimodal mixture by combin-

ing two distinct distributions, resulting in a dataset with two modes. In the second scenario, we

combined two distributions to create an unimodal mixture, producing a dataset with a single

dominant mode.

2.3.1.1 Bimodal Mixture Model

In this first scenario, we modeled a bimodal mixture consisting of a Gamma distribution with

parameters (1, 1.5) and a normal distribution with parameters (2, 0.3).

Figure 2.1 illustrates the identification of the mixture components by both the EM and EMD

algorithms. The EMD correctly identifies the mixture components and its curve closely matches

each underlying distribution. Additionally, while EM produced negative estimates for these

strictly positive distributions, the EMD algorithm correctly respected the positivity constraint

of the data.
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(a) Gamma distribution component

(b) Normal distribution component

Figure 2.1: Visualization of the individual components in the bimodal mixture

Using the parameters estimated by both EM and EMD, including the distribution weights,

we reconstructed the mixture distributions and compared them to the theoretical mixture. This

comparison is illustrated in Figure 2.2
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Figure 2.2: Comparison of the estimated bimodal mixture distribution by EM and EMD with
the theoretical mixture.

Figure 2.2 displays the probability density functions (PDFs) of the theoretical data along

with the estimates from both EM and EMD. The EMD algorithm effectively captured the two

distinct modes of the mixture, aligning closely with the theoretical mixture distribution. In

contrast, the EM algorithm failed to detect the bimodality, identifying only a single mode. These

visual results are supported by the MISE values, as shown in Table 2.1, which highlight the

superior performance of EMD over EM.

Table 2.1: Integrated Mean Squared Error (MISE) for the Bimodal Mixture Model

EM EMD
MISE 0.01031 9.8934e-04

2.3.1.2 Unimodal Mixture Model

In this second scenario, we modeled a mixture comprising two distributions: a Log-Normal

distribution with parameters (-1, 1.5) and an exponential distribution with parameter (1.75).

Once again, the EMD algorithm accurately identified the mixture components, closely matching

the true distributions, while the EM algorithm demonstrated poorer performance. In both cases,
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the EM estimates did not preserve the positivity of the data, leading to incorrect estimates in the

negative range, whereas EMD maintained the strictly positive nature of the data.

(a) Log-Normal distribution component

(b) Exponential distribution component

Figure 2.3: Visualizing the Unimodal mixture individual distribution components

Using the parameters estimated by EM and EMD, including the mixture weights, we recon-

structed the unimodal mixture and compared it to the theoretical distribution. This comparison

is shown in Figure 2.4
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Figure 2.4: Comparison of the original unimodal mixture with the estimates from EM and
EMD.

As illustrated in figure 2.4 the EMD algorithm provided a close approximation to the the-

oretical unimodal mixture, preserving data positivity. In contrast, the EM algorithm failed to

respect this constraint, producing negative values. The superiority of the EMD algorithm is

further confirmed by the MISE metric presented in Table 2.2, where EMD outperforms EM in

accurately estimating the data.

Table 2.2: Integrated Mean Squared Error (MISE) for the Unimodal Mixture Model

EM EMD
MISE 0.01605 1.9061 e-04

2.3.2 Three-Component Mixture Model

In this scenario, we applied our new algorithm to a mixture of three components: a log-normal

distribution with parameters (0, 1), a second log-normal distribution with parameters (-1, 1),

and an exponential distribution with parameter (1).
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(a) The first Log-Normal distribution

(b) The second Log-Normal distribution

(c) The exponential distribution

Figure 2.5: Visualization of the individual components in the three-component mixture
model.
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Using the estimated parameters from both the EM and EMD algorithms, we compared the

reconstructed mixture distributions to the original data. The results are shown in Figure 2.6.

Figure 2.6: Comparison of the simulated data (original mixture of two log-normal and
exponential distributions) with estimates from EM and EMD.

As seen in Figure 2.6, the EMD algorithm closely matches the theoretical mixture, preserv-

ing the strict positivity of the data. In contrast, the EM algorithm fails to maintain this constraint,

showing overflow near zero. These visual results are further validated by the MISE metric, as

presented in Table 2.3.

Table 2.3: Integrated Mean Squared Error (MISE) for the three-component mixture of
log-normal and exponential distributions

EM EMD
MISE 0.0093 2.5324 e-04

2.3.3 Five-Component Mixture Model

In this section, we tested our new algorithm on a more complex mixture model consisting of five

distinct distributions: an Exponential distribution (1.25), a Gamma distribution (2, 0.9), a Beta

distribution (1.5, 7), a Log-Normal distribution (-1, 0.1), and a Normal distribution (1, 0.1).
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(a) The Beta distribution (b) The Exponential distribution

(c) The Gamma distribution

(d) The Log-Normal distribution (e) The Normal distribution

Figure 2.7: Visualization of the individual components in the five-component mixture
model.
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Figure 2.8: Simulated data with a mixture of five distributions, and estimates from EM and
EMD.

In this more complex mixture model, the EMD algorithm provides an accurate approxi-

mation of the theoretical mixture, preserving the positivity constraint. In contrast, the EM

algorithm produces estimates that include negative values, as shown in Figure 2.8. The MISE

metric in Table 2.4 confirms the superior performance of EMD.

Table 2.4: Integrated Mean Squared Error (MISE) for the five-component mixture model

EM EMD
MISE 0.0309 0.1433 e-04

2.3.4 Discussion

The experiments conducted on simulated datasets produced encouraging outcomes, especially

when the data points clustered near the boundary (in our simulations, this boundary was zero, as

all the data values were positive). In these cases, the EMD algorithm successfully respected the

inherent limits of the data, avoiding the overflow problems that were observed with the classic

EM algorithm.
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2.4 Application 1 : Ultrasound Image Segmentation

For our real data experiment, we applied our new algorithm to ultrasound images. This choice

was driven by the unique characteristics of ultrasound images, which present specific challenges

well-suited to the capabilities of our algorithm.

Ultrasound images are known for their particular data distribution, characterized by strictly

positive pixel values ranging from 0 to 255, with a significant concentration of values near zero.

This distribution is illustrated in Figure (2.9), which shows the histogram of a sample of an

ultrasound image. The concentration of pixel values near zero, combined with the broad range

of values, creates a scenario where traditional segmentation methods often fall short.

Figure 2.9: Histogram of an Ultrasound Image illustrating the pixel intensity distribution.

Segmentation of ultrasound images poses several challenges:

• Low Contrast: Ultrasound images typically have low contrast, which makes it difficult

to distinguish between different tissues or structures. The lack of contrast reduces the

ability of traditional segmentation methods to effectively differentiate between regions of

interest [Tay et al., 2010].
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• Speckle Noise: Ultrasound images are subjected to high levels of speckle noise, which

can obscure the boundaries of structures and lead to inaccuracies in segmentation.

Speckle noise results from the interference of ultrasound waves scattered by tissues and

can significantly impact image quality [Mateo and Fernández-Caballero, 2009].

• Complex Structures: The structures within ultrasound images can be complex and

varied, often requiring advanced algorithms capable of handling intricate patterns and

textures.

The segmentation of ultrasound images has been extensively studied in the literature [Shamshad

et al., 2023], with various algorithms proposed to address the challenges posed by this imaging

technology. These approaches vary from traditional methods to more advanced methods involv-

ing machine learning and deep learning.

Among the traditional methods, we may cite threshold-based methods, which may be con-

sidered the simplest and earliest methods in ultrasound image segmentation, as they define a

value (the threshold) and transform the grayscale image into a binary one according to that

threshold ([Horsch et al., 2001] [Drukker et al., 2002] [Rodrigues and Giraldi, 2011]). The

Clustering-based methods group pixels or regions with similar intensity or texture character-

istics into clusters, enabling the identification of distinct tissue types or structures within the

image without requiring prior labeling or supervision [Moon et al., 2014] . Another popular

methods are the Graph-based methods. they represent the image as a graph, where pixels or

groups of pixels serve as nodes, and edges between them encode (dis)similarity. Segmentation

is achieved by partitioning the graph into meaningful regions based on criteria such as edge

weights or cuts, often optimizing a cost function that balances boundary smoothness and region

homogeneity ([Huang et al., 2012] [Huang et al., 2014] [Chang et al., 2015]).

The active contour models have been widely used for ultrasound image segmentation, em-

ploying energy minimization to capture object boundaries ([Fang et al., 2018] [Liu et al., 2010]

[Fang et al., 2022]). However, these models often struggle with the low contrast and speckle

noise present in ultrasound images. Another approach is the statistical shape models, which

incorporate prior knowledge about the expected shape of structures within the image [Shen et al.,
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2003]. While effective, these methods often require extensive preprocessing and fine-tuning to

achieve optimal results.

The Canny edge detection algorithm [Canny, 1986], is also commonly used. Known for

its simplicity and efficiency in detecting edges, Canny’s algorithm is effective at identifying

the boundaries of structures ([Hamou and El-Sakka, 2004] [Nikolic et al., 2016] [Zheng et al.,

2015] but can struggle with the speckle noise and low contrast typical of ultrasound images,

leading to potential inaccuracies in segmentation. The neuronal Networks are also widely

used in ultrasound image segmentation, especially the watershed transformation which is a

region-based approach that treats the image as a topographic surface. The regions of low

intensity represent valleys. It segments the image by flooding these valleys from selected mark-

ers, identifying boundaries at the points where water from different valleys meets, effectively

delineating structures and boundaries within the ultrasound image ([Huang and Chen, 2004]

[Gómez et al., 2010] [Lo et al., 2014]).

In recent years, deep learning-based methods have gained significant attention due to their

ability to learn complex patterns directly from data. Convolutional neural networks (CNNs),

in particular, have shown great promise in improving segmentation accuracy ([Ma et al., 2017]

[Alsinan et al., 2019] [Milletari et al., 2017]). However, challenges such as the reliance on large

annotated datasets and the potential for overfitting remain significant in applying deep learning

to ultrasound image segmentation.

One widely used deep learning approach is the U-Net architecture [Ronneberger et al., 2015]

a type of CNN specifically designed for image segmentation tasks. U-Net has been adopted for

medical image segmentation due to its ability to capture both spatial and contextual information.

U-Net has demonstrated significant improvements in segmentation accuracy across various

medical imaging modalities, including ultrasound [Luan et al., 2020] [Li et al., 2019] [Ansari

et al., 2023][Tong et al., 2021]. However, its performance also relies on the existence of a large

number of annotated data.

In the following section, we will introduce the two reference algorithmsU-Net and Canny

edge detectionthat have been selected to benchmark our proposed method. These algorithms
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are well-established in the literature and will provide a robust comparison for evaluating the

effectiveness of our approach.

2.4.1 Reference Algorithms

To evaluate the effectiveness of EMD, we compared it with two algorithms used in ultrasound

image segmentation literature. Initially, we assessed the performance of EMD against the

traditional EM algorithm. Next, we compared EMD with a classic method, the active contour

model, and specifically we used the Canny edge detection algorithm. Finally, we implemented

a deep learning approach the U-Net architecture, a popular model in image segmentation to

evaluate EMD.

2.4.1.1 U-Net

U-Net, a fully convolutional neural network for biomedical image segmentation, was intro-

duced by Ronneberger et al. in 2015 [Ronneberger et al., 2015]. It is characterized by its

U-shape, which consists of a symmetric encoder (contracting path) and a decoder (expanding

path). This structure allows for precise localization and classification of pixels and effectively

captures both local and global image features. While the encoder progressively extracts features

through convolutional and pooling layers, the decoder reconstructs segmentation masks using

upsampling and convolutional layers. Skip connections are essential to the success of U-Net

as they integrate low-level details from the encoder into the decoder, leading to more accurate

segmentation results. This design has made U-Net a basic model for many state-of-the-art

ultrasound image segmentation algorithms ([Bal-Ghaoui et al., 2023], [Zhou et al., 2019],[Weng

et al., 2019]...).

In our study, we trained a U-Net model on the CT2USforKidneySeg dataset [Song et al.,

2022], which includes 4,568 synthesized ultrasound images generated from computed tomogra-

phy (CT) scans, each paired with ground truth masks.

Below is a description of the U-Net architecture implemented in this study:
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1. Input Layer : The model accepts input images of size 128x128 pixels with a single

channel (grayscale).

2. Encoder Path (Contracting Path) : The encoding path consists of four levels of convo-

lutional layer, each followed by max-pooling for down-sampling.

Each convolutional block consists of two convolutional layers to maintain spatial dimen-

sions. The number of filters doubles at each subsequent level, starting from 64 and going

up to 1024.

After each layer, max-pooling reduces the spatial dimensions by half, allowing the net-

work to capture contextual information.

• Layer 1 : Two convolutional layers with 64 filters each, using a 3x3 kernel,

ReLU activation, and same padding.

MaxPooling2D with a pool size of 2x2 is applied to reduce spatial dimensions

and capture features.

• Layer 2 : Two convolutional layers with 128 filters each, using a 3x3 kernel,

ReLU activation, and same padding.

MaxPooling2D with a pool size of 2x2 is applied.

• Layer 3 : Two convolutional layers with 256 filters each, using a 3x3 kernel,

ReLU activation, and same padding.

MaxPooling2D with a pool size of 2x2 is applied.

• Layer 4 : Two convolutional layers with 512 filters each, using a 3*3 kernel,

ReLU activation, and same padding.

MaxPooling2D with a pool size of 2x2 is applied.

3. Bottleneck Layer : The bottleneck is the deepest part of the U-Net, with two convo-

lutional layers having 1024 filters, a 3x3 kernel size, and ReLU activation. This part

captures the most abstract and context-rich features from the input image.

4. Decoder Path (Expanding Path) : The decoding path mirrors the encoding path, but

with up-sampling to reconstruct the spatial resolution.

At each level, the feature map from the corresponding encoding layer is concatenated

with the up-sampled output. This helps in recovering fine-grained details lost during

down-sampling. Each layer in the decoding path consists of a transposed convolutional

layer (to up-sample the feature map) followed by two convolutional layers.
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• Layer 5 : Conv2DTranspose with 512 filters and a kernel size of 2x2, fol-

lowed by concatenation with the corresponding encoder layer (Layer 4).

Two convolutional layers with 512 filters each, using a 3x3 kernel, ReLU

activation, and same padding.

• Layer 6 : Conv2DTranspose with 256 filters and a kernel size of 2x2, fol-

lowed by concatenation with the corresponding encoder layer (Layer 3).

Two convolutional layers with 256 filters each, using a 3x3 kernel, ReLU

activation, and same padding.

• Layer 7 : Conv2DTranspose with 128 filters and a kernel size of 2x2, fol-

lowed by concatenation with the corresponding encoder layer (Layer 2).

Two convolutional layers with 128 filters each, using a 3x3 kernel, ReLU

activation, and same padding.

• Layer 8 : Conv2DTranspose with 64 filters and a kernel size of 2x2, followed

by concatenation with the corresponding encoder layer (Layer 1).

Two convolutional layers with 64 filters each, using a 3x3 kernel, ReLU

activation, and same padding.

5. Output Layer : A final convolutional layer with 1 filter, using a 1x1 kernel, and a sigmoid

activation function to produce the binary segmentation mask.

6. Compilation : The model is compiled with the Adam optimizer, binary cross-entropy

loss function, and accuracy as the evaluation metric.

The architecture’s components and their interrelationships are illustrated in the figure 2.10.

This architecture is known for its efficiency in segmenting images due to its use of skip

connections, which combine high-level features from the encoder path with low-level features

from the decoder path. This approach helps in retaining fine-grained details crucial for accurate

segmentation.
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Figure 2.10: U-Net architecture diagram
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2.4.1.2 Edge Detection

Edge detection is a traditional method for image segmentation that focuses on identifying the

boundaries between different regions in an image [Mohana Priya and Mohamed Fathimal,

2023]. The Canny edge detection algorithm is among the most popular edge detection tech-

niques [Thomas and Duela, 2024]. This algorithm is known for its robustness and precision in

identifying edges.

The Canny edge detector operates through a sequence of stages designed to ensure accurate

edge identification. First, it applies a Gaussian filter to smooth the image, which helps reduce

noise and avoid false edge discovery. Next, it uses gradient operators to compute the intensity

gradient of the image, highlighting areas where rapid changes in intensity occur, typically

indicating edges.

After calculating the gradient, the algorithm performs non-maximum suppression to thin out

the edges. This step ensures that only the most significant edge pixels are retained, providing a

cleaner edge map. Finally, the Canny algorithm uses a double thresholding process to identify

and classify edges as strong, weak, or non-edges. Strong edges are those that are clearly defined,

while weak edges are considered only if they are connected to strong edges, helping to refine

and complete the edge detection.

2.4.2 Evaluation Metrics

To evaluate the performance of the segmentation algorithms, we followed the guidelines and

recommendations of [Müller et al., 2022], [Taha and Hanbury, 2015] and [Popovic et al., 2007].

So we picked confusion matrix-based metrics and one distance-based metric. We used the

following metrics:

2.4.2.1 Intersection over Union (IoU)

Intersection over Union (IoU), also known as the Jaccard Index, is a metric used to measure the

overlap between two sets, typically between a predicted segmentation and the ground truth in
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image processing tasks. It is defined as the ratio of the intersection of the predicted and ground

truth areas to their union, providing a clear indication of how well the predicted segmentation

matches the actual object in the image, and is calculated as follows :

IoU =
Intersection Area

Union Area

2.4.2.2 Dice Coefficient

The Dice Coefficient, also known as the Sørensen-Dice coefficient and Sørensen index, is a

metric that measures the similarity between two sets. The Dice Coefficient is calculated as

twice the area of overlap between the predicted and ground truth regions divided by the sum of

the areas of the two regions. This metric is highly sensitive to the presence of common elements.

It is calculated using the following formula :

Dice Coefficient =
2 * Intersection Area

Area of Predicted Mask + Area of Ground Truth Mask

2.4.2.3 Precision

It is a performance metric that represents the proportion of true positive predictions among all

positive predictions made by the model. This precision is calculated according to the following

well-known formula:

Precision =
True Positives

True Positives + False Positives

2.4.2.4 Recall

It is a performance metric that represents the proportion of true positive predictions among all

actual positive instances. It measures the proportion of actual positive cases correctly identified

by the model. It is given by the following formula :
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Recall =
True Positives

True Positives + False Negatives

2.4.2.5 The Symmetric Hausdorff Distance (HD)

While confusion matrix-based metrics provide a general sense of segmentation performance,

they may fail to capture boundary inaccuracies, which are particularly critical in medical ap-

plications. To address this limitation, we use a distance-based metrics. Specifically, we utilize

the Symmetric Hausdorff Distance (HD), which offers a robust measure of boundary alignment

between the segmented region and the ground truth.

HD is commonly used to assess the quality of segmentations in image processing. It is

defined as the maximum of the directed Hausdorff distances between the two sets. Specifically,

for two point sets A and B, the directed Hausdorff distance from A to B is the maximum of the

minimum distances between any point in A and all points in B, and vice versa. The symmetric

Hausdorff distance is calculated as follows:

dH(A,B) = max

(
sup
a∈A

inf
b∈B
∥a− b∥, sup

b∈B
inf
a∈A
∥a− b∥

)
, (2.1)

where ∥a−b∥ represents the distance between points a and b. This measure provides a robust as-

sessment of similarity between the sets by considering both directions, thus offering a balanced

evaluation of discrepancies between them.

By incorporating the Symmetric Hausdorff Distance, we obtain a more clinically relevant as-

sessment of segmentation quality, reflecting the spatial accuracy of the boundaries in ultrasound

images.

2.4.3 dataset

We evaluated the segmentation algorithms using a dataset of ultrasound images and their corre-

sponding ground truth segmentation masks. The dataset employed was the Breast Ultrasound

Images Dataset (BUSI dataset) [Al-Dhabyani et al., 2020]), which includes breast ultrasound
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images from women aged 25 to 75 years, collected in 2018. This dataset includes 600 female

patients, yielding a total of 780 images with their ground truth masks divided into three cate-

gories : benign (437 images), malignant (210 images), and normal (133 images). It is one of the

most widely used and reliable resources for ultrasound image segmentation [Abhisheka et al.,

2023], [Yuan et al., 2024], [Chen et al., 2024], [Lawal and Yi, 2024]...

2.4.4 Results

This section presents the results of our segmentation experiments, evaluating the performance

of four algorithms: U-Net, EM, EMD, and Canny edge detection. Each algorithm was tested on

three categories of ultrasound images: benign, malignant, and normal. For each category, we

randomly selected representative images to illustrate segmentation performance, displaying the

original image, its corresponding ground truth mask, and the results from the four algorithms.

Additionally, we provide a detailed evaluation using metrics such as accuracy, recall, precision,

Intersection over Union (IoU), and Dice coefficient.

2.4.4.1 Benign Folder

The figure 2.11 represents the first step of our proposed algorithm, where we employed the

elbow method to determine the optimal number of clusters (k=4). This step provided the

necessary initialization for K-means and EMD.
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Figure 2.11: Elbow method applied to an ultrasound image.

Figure 2.12 illustrates the segmentation results for six randomly selected images from the

benign folder, showcasing the original image, the ground truth mask, and the segmentation

outcomes from the four algorithms.
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Figure 2.12: Segmentation results for six sample images from the benign folder: (a) Original
image, (b) Ground truth mask, (c) EMD segmentation, (d) Canny segmentation, (e) U-Net
segmentation, (f) EM segmentation.

The segmentation outcomes for the benign folder reveal that the EMD algorithm achieved

the best overall performance, with its segmentation results closely matching the region of

interest’s shape. Both EM and Canny failed to delineate the boundaries accurately, particularly

the EM, which detected significant noise in the images. U-Nets performance was inconsistent,

sometimes failing to detect the entire region of interest, and at times misclassifying other

regions as tumors. However, in certain images, U-Net performed excellently, detecting the

tumor perfectly.

Table 2.5 summarizes the evaluation metrics for each algorithm in the benign folder.
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Table 2.5: Evaluation metrics for benign Folder

Algorithm Dice IoU Precision Recall Symmetric Hausdorff Distance
EMD 0.8514 0.7412 0.6401 0.7401 37.5065
Canny 0.4356 0.606 0.6848 0.8176 75.8481
U-Net 0.7903 0.7288 0.4631 0.64 38.3610
EM 0.830 0.709 0.3315 0.3330 76.6738

As indicated in Table 2.5, EMD consistently demonstrates superior performance, achieving

the highest Dice coefficient (0.8514) and Intersection over Union (IoU) (0.7412), indicating

better accuracy and overlap in segmenting the region of interest. Additionally, it shows the

lowest Symmetric Hausdorff Distance (37.5065), suggesting better boundary alignment. On the

other hand, while the Canny algorithm has the highest recall (0.8176), its poor Dice coefficient

(0.4356) and IoU (0.6060) highlight its inability to precisely delineate the region, detecting

excessive noise instead. U-Net achieves satisfactory results, performing comparably to EMD,

with a Dice coefficient of 0.7903 and IoU of 0.7288. The EM algorithm showed performance

similar to U-Net but detected more noise.

2.4.4.2 Malignant Folder

Figure 2.13 displays the segmentation results for six sample images from the malignant folder.

Similar to the benign folder, the figure shows the original image, the ground truth mask, and the

segmentation outcomes from the four algorithms.
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Figure 2.13: Segmentation results for six sample images from the malignant folder: (a) Original
image,
(b) Ground truth mask, (c) EMD segmentation, (d) Canny segmentation, (e) U-Net
segmentation, (f) EM segmentation.

In the malignant folder, the tumor regions exhibited less smooth boundaries and irregular

shapes compared to those in the benign folder. This impacted the performance of the algorithms,

making it more difficult to accurately capture fine details. The EMD algorithm continued to

outperform the other methods, producing a segmentation mask that closely matched the ground

truth with minimal noise. However, the irregular tumor boundaries posed challenges for all

algorithms.

Table 2.6 provides the evaluation metrics for each algorithm applied to the malignant folder.
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Table 2.6: Evaluation metrics for malignant Folder

Algorithm Dice IoU Precision Recall Symmetric Hausdorff Distance
EMD 0.7378 0.5845 0.3988 0.6582 53.15072
Canny 0.4960 0.3381 0.5082 0.4583 84.4835
U-Net 0.6444 0.4227 0.2924 0.3133 59.8080
EM 0.5579 0.3869 0.3248 0.2180 81.7097

As indicated in Table 2.6, the performance metrics reveal notable differences among the

algorithms. The EMD algorithm achieved the highest Dice score of 0.7378 and an IoU of

0.5845, indicating it provided the closest match to the ground truth while maintaining a rea-

sonable balance between precision and recall. Additionally, the EMD algorithm had the lowest

Symmetric Hausdorff Distance of 53.15072, suggesting it was the most effective at accurately

delineating tumor boundaries compared to the other methods. The Canny algorithm, although

demonstrating a higher precision of 0.5082, recorded the lowest Dice and IoU scores, reflecting

its difficulties in accurately capturing the tumor region. U-Net achieved a moderate Dice score

of 0.6444 and an IoU of 0.4227, but also exhibited a high Symmetric Hausdorff Distance

of 59.8080, indicating challenges with precise boundary delineation. The EM algorithm’s

performance was somewhat comparable to that of U-Net in terms of precision and recall, but

its metrics suggest less effective segmentation accuracy and boundary definition. Overall, the

results demonstrate that while EMD is the most effective in capturing the tumor shape with the

best boundary precision, all algorithms face significant challenges regarding tumor boundary

accuracy in the malignant folder.

2.4.4.3 Normal Folder

Figure 2.14 demonstrates the segmentation results for six sample images from the normal folder.

The original image, the ground truth mask, and the segmentation results from U-Net, EM, EMD,

and Canny are displayed.

UMA/ENSI 70



THE DIFFEOMORPHISM EXPECTATION-MAXIMIZATION ALGORITHM

Figure 2.14: Segmentation results for six sample images from the normal folder: (a) Original
image,
(b) Ground truth mask, (c) EMD segmentation, (d) Canny segmentation, (e) U-Net
segmentation, (f) EM segmentation.

The normal folder presents a unique challenge due to the absence of any tumors, with the

ground truth mask being entirely black. This situation complicates the evaluation of segmen-

tation algorithms, as any detected features are likely to be noise rather than actual regions of

interest. Both the EMD and U-Net algorithms identified some noise as potential regions of

interest; however, EMD failed to delineate any meaningful structures. Similarly, the EM and

Canny algorithms also detected significant amounts of noise, underscoring their limitations in

distinguishing between actual tissue and artifacts in images where no clear regions of interest

exist.

Given that the ground truth masks in the normal folder are completely black (i.e., 100%

background), traditional evaluation metrics such as those based on confusion matrices cannot
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be computed. Specifically, True Positives and False Negatives are both zero, preventing any

meaningful calculation of metrics like Precision, Recall, or F1-Score. Furthermore, calculating

the Symmetric Hausdorff Distance is not feasible due to the lack of a defined region to mea-

sure against. Therefore, in this scenario, we rely solely on visual comparisons to assess the

performance of the algorithms.

2.4.5 Discussion

The visual results and evaluation metrics consistently demonstrate that the EMD algorithm

outperforms the other methods, achieving the highest IoU and Dice coefficients. U-Net, though

delivering competitive results, shows limitations due to its requirement for extensive labeled

datasets for training. EMD offers a more efficient alternative, as it does not rely on large datasets

or lengthy training processes. Canny, although computationally efficient, fails to capture the

structures present in ultrasound images, leading to weaker segmentation performance. This is

evident from both the low IoU and Dice values across all datasets.

The superior performance of EMD can be attributed to the logarithmic transformation ap-

plied to the data. This transformation enhances the contrast of ultrasound images, making

the differentiation between regions clearer. By emphasizing the structural components of the

images, the logarithmic transformation significantly improves the segmentation results.

While these findings underscore the effectiveness of the EMD algorithm on this dataset,

further validation on larger and more diverse ultrasound datasets is necessary to confirm the

generalizability of this approach across various medical imaging scenarios.

2.5 Application 2 : Affine Multi-Scale Curve Registration

Using EM Algorithm

The work developed in this section was published in [Sakrani et al., 2021].
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Affine Multi-Scale Curve Registration (AMSCR) [Sakrani et al., 2021] enhances the Affine

Curve Matching Algorithm (ACMA) [Elghoul and Ghorbel, 2021b] by incorporating multi

scale descriptors to improve curve alignment across various scales. This section details how the

Expectation-Maximization (EM) algorithm is integrated into AMSCR to optimize the selection

of scales and refine affine transformations.

Contour registration is a fundamental step in image processing and computer vision, partic-

ularly for aligning and matching shapes or objects across different images. It involves aligning

the contours, or boundaries, of objects across different images, ensuring that corresponding

points on the contours match as closely as possible. This process is essential for a wide range

of applications, including medical imaging, object recognition, and shape analysis. However,

accurately registering contours is challenging due to several factors.

Contour registration can be particularly complex because the same object may appear in

different forms across images. These variations could be caused by different angles, times

of capture, lighting conditions, or distortions in the images. Furthermore, contours are often

subject to deformations, scale variations, noise, and occlusions [Mai et al., 2010]. These factors

complicate the process of finding accurate correspondences between contours, especially when

dealing with intricate shapes or highly variable data.

Several traditional methods have been proposed to improve contour registration. Many of

these methods are based on Euclidean transformations, such as the work in [Huang et al., 2006],

which employed Mutual Information (MI) to align shapes by retrieving optimal transformation

parameters. Belongie et al. introduced the Shape Context method [Belongie et al., 2002], while

the Inner-Distance Shape Context (IDSC) technique [Ling and Jacobs, 2007] was developed

to capture the shortest path between feature points within shapes. Dynamic programming has

also been employed to handle distortions and occlusions in contour alignment [Petrakis et al.,

2002]. [Kaothanthong et al., 2016] proposed a shape signature called the Distance Interior Ratio

(DIR) to align curves using a histogram-based method. These techniques have demonstrated

effectiveness in various domains but often struggle with complex deformations and varying

scales, particularly in noisy or occluded images.
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However, traditional methods, especially those based on Euclidean or homography transfor-

mations, often face limitations when dealing with more complex deformations, as they require

several numerical derivations. Affine transformations, which require fewer derivations, have

been more successful in registering curves in challenging scenarios. Methods like the Affine

Scale-Invariant Feature Transform (ASIFT) [Morel and Yu, 2009] and the Affine Curvature

Scale Space (ACSS) [Mokhtarian and Abbasi, 2001] have shown promise in handling affine dis-

tortions effectively. Yet, challenges remain in the presence of noise and occlusions, particularly

when using methods such as Curvature Scale Space (CSS) [Mokhtarian et al., 1996], which can

be sensitive to local maxima.

To enhance the performance of contour registration, multi-scale approaches have been in-

troduced. These methods incorporate information from multiple scales to capture both global

shapes and finer local details. For example, triangular features have been used to create a

multi-scale Fourier descriptor [Shu et al., 2015], while the Generalized Curvature Scale Space

(GCSS) method [BenKhlifa and Ghorbel, 2019] has been employed to provide a more com-

prehensive shape descriptor. Such methods improve the robustness of contour matching by

allowing for variations in scale, shape complexity, and local deformations.

In this section, we introduce the AMSCR-EM method, which combines affine arc-length

parameterization and Gaussian smoothing for normalization. The EM algorithm is employed to

optimize the registration by filtering the scales, enhancing the accuracy and performance of the

registration process.

2.5.1 Affine Multi-Scale Curve Registration (AMSCR)

In this section, we provide an overview of the Affine Multi-Scale Curve Registration (AMSCR)

method, outlining its key concepts and procedural steps.

2.5.1.1 Affine Arc-Length Reparametrization

When comparing curves extracted from different images, it is necessary to normalize the param-

eterization of each curve to ensure consistency. The method of affine arc-length reparametriza-
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tion is applied to achieve this normalization. For a given curve f(t), the normalized affine arc

length parameterization l(t) is expressed as follows:

l(t) =
1

L

∫ t

0

∣∣∣det(ḟ(u), f̈(u))∣∣∣ 13 du (2.2)

Here, L denotes the affine total length of the curve, ḟ(u) and f̈(u) represent the first

and second derivatives of the curve f(u), and det refers to the determinant operator. This

parameterization allows us to compare curves that may initially have different parameterizations

but represent the same geometric shape.

Following normalization, the affine transformation between two curves f and h is defined

by the following relationship:

h(l) = Af(l) + B (2.3)

In this equation, A is the affine transformation matrix, which encapsulates scaling, rotation,

and shearing, while B is the translation vector. By using this transformation, the curves are

aligned for comparison under affine transformations.

2.5.1.2 Affine Matrix Estimation

To find the affine transformation parameters, A and B, we minimize the distance between the

transformed version of one curve and the other curve. The optimization problem can be written

as:

min
A,B
∥Af(l) + B − h(l)∥2 (2.4)

This system of equations can be expressed in matrix form as follows:

H = DU (2.5)
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where H represents the target curve values, D is a matrix constructed from the parameter-

ized points of the input curve, and U is the vector containing the unknown affine parameters A

and B. To solve for U , we compute:

U = (DTD)−1DTH (2.6)

This pseudo-inverse solution allows us to estimate the affine transformation that minimizes

the error between the two curves.

2.5.1.3 Multi-Scale Smoothing and Registration

Building upon the affine curve alignment, the AMSCR method introduces a multi-scale ap-

proach by filtering the curves at various scales. The smoothing of the curves f and h is

performed through convolution with a Gaussian function at different scales σk, where 1 ≤ k ≤ p

and p represents the number of scales:

fσ
x (l, σk) = fx(l) ∗ g(l, σk), fσ

y (l, σk) = fy(l) ∗ g(l, σk) (2.7)

The Gaussian function g(l, σk) is defined as:

g(l, σk) =
1

2πσ2
k

e
− l2

2σ2
k (2.8)

This operation is applied to both curves, f and h, at each scale, resulting in a series of

smoothed curves for both. The resulting system of equations at multiple scales can be written

as:



hσ(l1) = Afσ(l1) + B

hσ(l2) = Afσ(l2) + B

...

hσ(lN) = Afσ(lN) + B

(2.9)
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Each scale generates a system of equations. However, not all scales contribute equally to

the registration process. Some scales capture fine local details, while others provide a more

global alignment. Therefore, selecting the most relevant scales is crucial for accurate curve

registration.

2.5.2 AMSCR-EM

Instead of empirically selecting the relevant scales, we propose to use the EM algorithm to

identify the class of relevant scales. This section introduces the Affine Multi-Scale Curve

Registration with Expectation Maximization (AMSCR-EM) algorithm, which enhances the

registration process by unisg the EM algorithm with the affine reparametrization. The EM

algorithm helps identify the most relevant scales from a mixture of possible scales.

In this context, the scales correspond to different levels of Gaussian smoothing applied to

the curves. Since not all scales are equally relevant, the EM algorithm is used to identify the

mixture components that correspond to the most important scales for registration. Once the

relevant scales are identified, we refine the registration by focusing on these scales.

In cases where the squared Euclidean distance (L2) between the curves is extremely small

the EM may not perform well due to an overflow at zero in that case we propose using the

(EMD) as an alternative.

To better manage this, we estimate the density of L2 values using the Fast Kernel Density

Estimator (FKDE), as shown in Figure 2.15. This visualization helps us understand the distri-

bution of L2 values.

As depicted in the figure 2.15 the L2 values are near zero, but they didn’t overflow with

FKDE. So we decided to apply the regular EM

The key steps of the AMSCR-EM algorithm are depicted in the figure 2.16 and described in

the flowing paragraph :

1. Re-sampling: Curves f and h are re-sampled using affine arc-length reparametrization,

ensuring that their parameterizations are comparable across different scales.
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Figure 2.15: Estimated PDF of L2 using FKDE

Figure 2.16: Diagram of the AMSCR-EM algorithm.

2. Gaussian Smoothing: The re-sampled curves are smoothed at multiple scales σk using

Gaussian kernels.
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3. Affine Parameter Estimation: For each scale σk, the affine parameters (Âσk
, B̂σk

) are

estimated by minimizing the squared Euclidean distance L2 between the curves.

4. Expectation Maximization (EM): The EM algorithm is applied to the mixture of scales

to identify the mixture component of the most relevant components. Once the mixture

components are identified, we plot the probability density functions (PDFs) of the mixture

and select the threshold S∗. As shown in the figure 2.17, the threshold S∗ is identified as

the intersection between the two curves. We notice that EM didn’t overflow at zero so no

need to use EMD in this case.

Figure 2.17: Visual representation of the PDF estimated by EM algorithm and the point of
intersection between them

2.5.3 Experimentation and Results

We evaluate AMSCR-EM on two separate datasets the MPEG-7 and Kimia-99. The method’s

performance is assessed based on registration accuracy and robustness across different shapes
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and scales. We compare our method against existing techniques, focusing on alignment preci-

sion and computational efficiency.

2.5.3.1 MPEG-7 Image Database Retrieval

The MPEG-7 shape database [Latecki et al., 2000] is a widely used database in computer vision.

The MPEG-7 Set-B contains 70 shapes, each with 20 images. thus it contains 1400 images.

Figure 2.18 provides examples from each category. To evaluate the performance of the

proposed approaches in shape retrieval, we use the Bulls Eye score, as described in [Yang et al.,

2018]. This score measures how many correct contours from the same class are among the top

2Nc most similar shapes, with Nc being the number of samples per class. The Bull’s Eye score

[Fu et al., 2013] is calculated as following :

Bull’s Eye Score =
Number of correct results retrieved

Total possible correct results
× 100 (2.10)

Figure 2.18: Examples from the MPEG-7 dataset. [[Wang and Gao, 2014]]

Table 2.7 presents the Bulls Eye scores for the proposed algorithms alongside existing meth-

ods. Our proposed method, Affine Multi-Scale Curve Registration using EM (AMSCR-EM),

achieves a score of 94.36%, approaching the top-performing Invariant Multi-scale + LP method.
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Table 2.7: Retrieval results on the entire MPEG-7 Set-B dataset.

Algorithm Bull’s Eye Score (%)
Multi-scale contour flexibility shape signature [Shu et al., 2015] 67.57 %
Shape Contexts [Belongie et al., 2002] 76.51 %
GCSS [BenKhlifa and Ghorbel, 2019] 78.84 %
SMR by data-driven EM [Tu et al., 2008] 80.03 %
Affine CSS [Mokhtarian and Abbasi, 2001] 81.12 %
CSS-SW [Mai et al., 2010] 81.33 %
Fast Non-Rigid Global Registration [Elghoul and Ghorbel, 2021a] 82.42 %
AICD [Fu et al., 2013] 84.26 %
Multiscale Representation [Adamek and O’Connor, 2004] 84.93 %
IDSC + AspectNorm + SR [Temlyakov et al., 2010] 88.39 %
Multiscale Fourier Descriptor [Yang and Yu, 2019] 83.94 %
MSFDGF-SH [Zheng et al., 2020] 87.76 %
Invariant Multi-scale [Xu et al., 2016] 91.25 %
IMTF [Yang and Yu, 2021] 91.26 %
ACMA [Elghoul and Ghorbel, 2022] 91.55 %
IDSC + LCDP [Yang et al., 2009] 93.32 %
AMSCR [Sakrani et al., 2021] 93.61 %
IDSC + Affine Normalization [Gopalan et al., 2010] 93.67 %
AMSCR using Binary-EM 94.36 %
Invariant Multi-scale + LP [Xu et al., 2016] 94.51 %

2.5.3.2 KIMIA Image Database Retrieval

The KIMIA databases [Sebastian et al., 2004] are widely used benchmarks in shape recognition

and pattern matching. The KIMIA-99 dataset contains 99 curves, divided into 9 categories, with

each category consisting of 11 shapes. Figure 2.19 shows samples from KIMIA-99.

2.8 presents the top 10 matching shapes for the KIMIA-99 dataset. The AMSCR algorithm

combined with EM, achieves high matching performance, consistently ranking among the top

methods. The AMSCR-EM variant shows excellent performance, matching the top shape

correctly in all instances and slightly improving on the standard AMSCR method. This indicates

that incorporating EM methods enhances the accuracy of shape matching.

Overall, the AMSCR-EM method shows promising results across both datasets, indicating

its robustness and accuracy in shape matching tasks.
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Figure 2.19: Example shapes from the KIMIA-99 dataset.
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Table 2.8: Top 10 closest matching shapes for KIMIA-99 dataset.

Algorithm Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10
Shape context 97 91 88 85 84 77 75 66 56 37
CPDH+EMD(eucl) 96 94 94 87 88 82 80 70 62 55
CPDH+EMD(shift) 98 94 95 92 90 88 85 84 71 52
Generative model 99 97 99 98 96 96 94 83 75 48
PS+LBP 99 97 97 88 88 86 86 90 80 77
Shock graphs 99 99 99 98 98 97 96 95 93 82
MDS+SC+DP 99 98 98 98 97 99 97 96 97 85
IDSC+DP 99 99 99 98 98 97 97 98 94 79
Shock Edit 99 99 99 98 98 98 96 95 94 86
Shape-tree 99 99 99 99 99 99 99 97 93 86
GM 99 99 99 99 99 99 99 97 93 86
Symbolic rep 99 99 99 99 96 96 99 95 93 88
IMC 99 99 99 99 98 97 95 94 90 83
HF 99 99 99 99 98 99 99 96 95 88
IDSC+LBP 99 99 99 99 98 97 97 98 98 96
ACMA 99 99 99 99 99 99 98 98 97 95
SMR by data-driven EM 99 97 99 98 96 96 94 83 75 48
AMSCR 99 99 99 99 99 99 98 98 97 96
AMSCR-EM 99 99 99 99 99 99 96 98 98 96
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2.6 Conclusion

In this chapter, we have introduced a novel variant of the Expectation-Maximization algorithm:

the Diffeomorphism EMD. By applying a diffeomorphism to the data prior to executing the EM

algorithm, we enhance its ability to handle bounded and semi-bounded data. The integration

of the elbow method for class estimation and the logarithmic transformation further improves

the performance of EMD, especially in cases where traditional EM struggles with boundary

overflow issues.

The effectiveness of EMD was validated through tests over simulated data and over ultra-

sound image segmentation tasks. It demonstrated superior accuracy and noise management

compared to other established methods such as U-Net, EM, and Canny. These results un-

derscore EMD’s potential as a powerful segmentation tool for bounded or semi-bounded data

clustered near the edge.

Also, we introduced a new algorithm for the Affine multi scale registration problem The

AMSCR-EM. it uses the Em algorithm to optimize the identification of the most relevant scales

among the mixture of scales. The tests conducted on two different datasets highlighted the

efficiency of this new algorithm.
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Chapter 3 Abstract

This chapter presents a detailed assessment of deep learning algorithms developed for financial

forecasting. It commences with an introduction to the field of financial forecasting.

The methodology section details the processes employed to evaluate the algorithms effec-

tively, setting the groundwork for a thorough analysis. A probabilistic criterion for algorithm

evaluation is used, emphasizing the importance of statistical rigor in assessing performance.

This leads to a detailed exploration of the Cumulative Distribution Target Criterion (CDTC), a

probabilistic evaluation criterion developed to enhance the assessment of algorithms.

The results and analysis section presents findings from both traditional and probabilistic

evaluations of deep learning algorithms. Traditional evaluation techniques are discussed, em-

phasizing their limitation in detecting the instability in the performance across single iterations

and multiple iterations (100 iterations), while the probabilistic evaluation section delves into

the advantages of using probabilistic approaches to gauge the algorithms predictive capabilities

more effectively.

In conclusion, this chapter synthesizes the insights gained from the evaluations, highlighting

the advantages of the use of a probabilistic approach to evaluate deep learning algorithms in

financial forecasting and offering directions for future research and improvement in algorithmic

evaluation.
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3.1 Introduction

In this chapter, we present a comparative study evaluating the performance of deep learning

algorithms within the context of regression tasks. Our focus is on utilizing a probabilistic

evaluation criterion to assess these algorithms more accurately. Traditional evaluation metrics,

often based on a limited number of model executions, may lead to misleading assessments.

This is due to the fact that errors can be considered realizations of continuous random variables,

which introduces variability that might cover the true performance and stability of models,

particularly in the context of complex financial data.

To address these challenges, we propose the use of "Cumulative Distribution Target Cri-

terion" (CDTC), a probabilistic metric designed to provide a more nuanced assessment of

model performance. Unlike conventional metrics, CDTC evaluates algorithms based on the

distribution of their error rates over multiple executions, offering insights into both the accuracy

and stability of models.

In this chapter, we apply CDTC to assess the performance of Long Short-Term Memory

(LSTM) networks for financial forecasting, specifically focusing on stock close price predic-

tion. Financial forecasting is by definition complex due to the multitude of factors influencing

financial data, both internally and externally. Prices incorporate information quickly, making

accurate predictions challenging, and financial data is often noisy and rapidly changing.

To address these challenges, financial analysts use technical analysis, which encompasses

numerous features, such as those provided by Yahoo Finance (92 features). Thus, the financiers

often uses Feature selection methods to be able to reduce the feature set to a more manageable

number while retaining the most relevant features. A review by Nti in 2020 [Nti et al., 2020]

found that 99% of the studies reviewed employed correlation-based feature selection methods.

In this work, we propose using Principal Component Analysis (PCA) as a dimensionality

reduction technique for feature selection. PCA can significantly reduce the number of features

while preserving as much information as possible.
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We will utilize the CDTC criterion to evaluate the impact of dimensionality reduction via

PCA on various LSTM architectures for stock price prediction. By applying CDTC, we aim to

provide a robust comparison of different LSTM models and demonstrate how dimensionality

reduction techniques can influence model performance.

3.2 Overview of Financial Forecasting

Financial forecasting, particularly stock price prediction, is a challenging task due to the uncer-

tainty and multitude of influencing factors in the stock market [Zhao et al., 2023]. Researchers

have explored various methodologies to enhance prediction accuracy, each with its strengths

and limitations.

Early approaches to financial forecasting relied on time series analysis techniques. Models

such as Autoregressive Moving Average (ARMA) [Rojas et al., 2008] and Autoregressive

Integrated Moving Average (ARIMA) [Kumar et al., 2022] utilize historical data to predict

future prices based on observed trends. These models are foundational in time series forecasting

but often struggle with nonlinearity and complexity in financial data.

The evolution of machine learning introduced a variety of methods such as Artificial Neural

Networks (ANNs) [Kurani et al., 2023] [Gurjar et al., 2018], Support Vector Machines (SVMs)

[Sapankevych and Sankar, 2009], and fuzzy theory-based models [Boyacioglu and Avci, 2010]

[Wang et al., 2023] have demonstrated considerable promise in capturing complex relationships

in financial data. These methods offer greater flexibility and can model nonlinearities more

effectively than traditional time series models.

Enhancements to forecasting models often involve advanced feature selection and extraction

techniques. Principal Component Analysis (PCA) [Cao and Wang, 2020] reduces dimension-

ality by transforming data into principal components, which can improve model performance.

Evolutionary algorithms such as Genetic Algorithms (GA) [Li et al., 2022], wavelet transforms

[Liu et al., 2020], and Particle Swarm Optimization [Thakkar and Chaudhari, 2021b] are also

used to optimize feature selection and model parameters, further refining prediction accuracy.
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Unsupervised methods like clustering [Vilela et al., 2019] have also been applied to identify

patterns in stock price data.

Recent advancements in deep learning have significantly impacted financial forecasting.

Deep learning models, capable of uncovering complex, nonlinear relationships in noisy data,

have shown great promise. Methods such as Deep Neural Networks (DNNs) [Yu and Yan, 2020]

[Thakkar and Chaudhari, 2021a], Convolutional Neural Networks (CNNs) [Shah et al., 2022]

[Chen and Huang, 2021] [Akehir and Kiliç, 2022], and Long Short-Term Memory networks

(LSTMs) [Jin et al., 2020] [Li et al., 2021] [Ding and Qin, 2020] are increasingly used for stock

price and return predictions.

Among these, LSTMs are particularly noteworthy for their robustness in capturing temporal

dependencies [Hu et al., 2021]. Studies such as [Hua et al., 2019] and [Teng et al., 2022]

highlight the effectiveness of LSTMs in time series forecasting. Despite their advantages,

evaluating LSTM performance remains challenging due to their intrinsic instability [Ghazi et al.,

2019].

In the context of these diverse methodologies, this thesis focuses specifically on the impact

of dimensionality reduction through PCA on LSTM networks for financial stock prediction.

By exploring this interaction, the thesis aims to assess the impact of PCA on the performance

of LSTM models in forecasting stock prices, addressing both the strengths and limitations of

integrating these techniques.

3.3 Methodology

This study investigates the influence of Principal Component Analysis PCA on a Long Short

Term Memory LSTM network’s ability to predict stock closing prices.

The experimental analysis is performed on different LSTM architectures, varying in their

input features. These models were implemented using Python on Google Colab. We utilized the

Optuna library to automatically optimize the hyperparameters for these models. The optimiza-

tion process was executed multiple times (100 times) for each model to ensure the selection
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of the most effective hyperparameters. For each model, the best hyperparameters found were

tested on the other models, and we retained the configuration that yielded the best performance

across all models. Once the configurations were established, we trained each model on a

historical dataset of stock prices and evaluated their performance on a held-out test set.

The table 3.1 presents the list of the hyperparameters and their corresponding range of values

used in Optuna and the best value found. The "Number of Layers" indicates the number of

layers in the LSTM network. It was interesting to notice that for all four different architectures,

the best number of LSTM layers was one. The single-layer LSTM model outperformed the

multilayer LSTM model. This result corroborates the findings of [Bhandari et al., 2022]. How-

ever, the one-layer LSTM presented a consequent stability problem, so we had to re-run Optuna

starting from two LSTM layers.

While the "Number of Units" corresponds to the number of units within the hidden layers

of the LSTM network, the "Dropout Rate" is applied to mitigate overfitting. The "Activation"

function can take on values such as sigmoid, relu, or tanh. "Batch Size" represents the number

of samples per batch during training. The "Number of Epochs" denotes the total iterations over

the entire training dataset. The "Optimizer" can be one of three options: stochastic gradient

descent (SGD), Root Mean Square Propagation (RMSProp), or Adaptive Moment Estimation

(ADAM). "Learning Rate" signifies the rate at which the back-propagation algorithm learns.

Lastly, "Number of Steps" refers to the size of the time window used to segment the sequential

stock price data denotes the time windows used to segment the sequential stock price data.

Consequently, for each input data, the closing price is predicted based on the last ’The number

of Steps’ days. , and "Loss" can be either mean squared error or mean absolute error.

To thoroughly assess the predictive performance of each LSTM model, we conducted 100

runs for each model configuration. This allowed us to generate a sample of 100 performance in-

dicators for each model. The coefficient of determination (R2) was utilized as the representative

error metric.
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Table 3.1: List of parameters and their corresponding range of values used in Optuna

Hyperparameter Considered values Best value
number of layers [2,10] 2
number of units [16,256] 128
dropout rate [0.0,0.9] .034
activation ’relu’, ’tanh’, ’sigmoid’ ’relu’
batch size [8, 16, 32, 64] 16
epochs [10, 100] 50
optimizer ’adam’, ’sgd’, ’rmsprop’ ’rmsprop’
learning rate [1e-5, 1e-2] 2.04 e-05
number of steps [5, 60] 15
loss ’mean squared error’, ’mean absolute error’ ’mean absolute error’

The compared LSTM networks differ only in their input layers and more specifically in the

number of neurons in the input layer. We detail below the features constituting the input layers

of the 4 studied networks.

• Architecture 1 : The input layer is composed of 6 neurons relating to 6 features. It’s

about closing price close, the opening price open, the highest price of the session high,

the lowest price of the session low, the trading volume volume and the price closing

adjusted adj close.

• Architecture 2 : This architecture is more complex since the input layer is composed of

91 attributes derived from technical analysis, such as moving averages, relative strength

index (RSI), stochastic oscillators, and others. All attributes included in our analysis

displayed a missing data percentage under 25%

• Architecture 3: This architecture is a simplification of architecture 1 thanks to the use

of PCA. Indeed, the inertia due to the first principal axis is already 97.67%. Therefore,

we propose an input layer with only two features: the linear combination of the data

projected on the main axis and the variable ’Close’.

• Architecture 4 : The dimension reduction by the PCA for the data of architecture 2 is at

the origin of this fourth architecture. Here the main axis has an inertia of only 40.12%.

The second main axis has an inertia of 29.54%. We chose to keep as features the linear

combination of the data projected on the first two axes and the ’Close’ feature since the
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variance explained on these first two axes is around 70%. The input layer of this network

will therefore be composed of 3 features.

The dataset was obtained from Yahoo Finance. We chose to conduct our experiment on

Google stock prices from 20-08-2004 to 01-01-2023 (4625 days). The data normalization was

performed using MinMaxScaler, which scales each variable to the range [0,1].

Subsequently, we divided the dataset into two different sets. The initial set consists of 80%

of the original dataset, covering 3685 days, utilized as the training dataset. The remaining 20%

(910 days) constituted the testing dataset.

3.4 Probabilistic Criterion for Algorithms Evaluation

Traditional evaluation metrics for assessing model and algorithm efficiency often rely on a

limited number of model executions. However, each execution can yield varying error rates,

leading to inaccuracies in performance evaluation. This approach fails to capture the stability

of models. For example, traditional metrics might not reveal this inconsistency if a model

converges to two different means.

Therefore, a comprehensive evaluation should encompass a larger number of executions

to better understand the variability and ensure a more robust assessment. It is crucial to de-

velop new evaluation metrics to assess different machine learning techniques thoroughly and

to measure the impact of dimensionality reduction on the accuracy and stability of stock price

predictions.

In this work, we chose to use a probabilistic criterion called the Cumulative Distribution

Target Criterion CDTC introduced in [Ben Slimen et al., 2022].

Since the error rate varies with each execution, it can be considered as a continuous random

variable (CRV). This variability allows us to apply the Cumulative Distribution Target Crite-

rion CDTC, which relies on estimating the probability density function PDF of performance

indicators.
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The CDTC provides a means to compare multiple algorithms by estimating the PDF of

their error rates. To obtain this estimation, a significant number of performance indicators must

be generated through repeated executions of the algorithm under evaluation. As a result, the

CDTC criterion is particularly useful for assessing Machine Learning algorithms, including

Long Short-Term Memory LSTM networks.

3.5 The CDTC criterion

This section presents the Cumulative Distribution Target Criterion CDTC introduced in [Ben Sli-

men et al., 2022]. As mentioned in the previous section, this criterion is based on the estimation

of the PDF of the generated sets of performance indicators (prediction errors). Considering

that a few numbers of executions of the model are not sufficient to accurately evaluate a model,

the CDTC requires a significant number of executions, typically at least 100 executions. At

each execution, we can observe a different value of the performance indicator, denoted by yi.

Therefore, we obtain a set of performance indicators. Each element of this set can be considered

as a realization of a continuous random variable y. Thus, it will be possible to estimate the PDF

of y by parametric or non-parametric methods.

Since we have no information about the distribution shape, employing non-parametric meth-

ods would be more appropriate As demonstrated in the section ?? combining FKDE with the

plug-in algorithm leads to a robust convergence of the estimator within the Integrated Mean

Squared Error IMSE!. Then, we will employ the FKDE combined with the plug-in algorithm to

estimate the PDFs. Let A1, A2, ..., Ak be k architecture models to be compared and Y1, Y2, ..., Yk

their sets of prediction error value. The cardinal of each set is |Yi| = ni.

Estimating the probability density function provides a powerful visualization tool. By display-

ing the distribution of performance indicators for each architecture on a single plot, it allows a

direct visual comparison of both performance and stability.

However, in certain cases, such visual comparison may not be straightforward. therefore,

the CDTC [Ben Slimen et al., 2022] allows us to quantitatively measure the relative efficiencies
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of the compared architectures. The CDTC, relies on the cumulative functions of the Yi variables

and is designed to distinguish the performance levels among the various architectural models.

To compute the CDTC criterion, we consider that the mean value of Yi, denoted as µi, is

estimated as follows:

µi =

∑ni

j=1(Yij)

ni

We denote µ as the average of the prediction error values across all architecture models

A1, A2, ..., Ak. The estimation for µ is calculated as follows:

µ =

∑k
i=1(µi)

k

We define CDTC(Ai) as the value for the proposed criterion specific to architecture model

Ai. This criterion represents the cumulative distribution function value of Yi with respect to

µ. The computation of the CDTCAi
varies depending on whether it is a maximization or

minimization problem.

In this work, we chose R2 as the performance indicator of the prediction. As it is one of

the most used metrics in the literature and according to a study conducted by Chicco and his

colleague in 2021 R2 is more informative and reliable than many other widely used metrics

[Chicco et al., 2021].The R2 score is calculated by the given formula 3.1

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(3.1)

In this formula yi represents the real values, ŷi the values predicted by the model, ȳ the mean

of the real values, and n is the number of observations.

Therefore, in this chapter, we are dealing with a maximization problem. A higher R2

indicates a better fit between the predicted and actual values.

To calculate the CDTC, we consider the integral of f between µ and +∞, (equation 3.2).
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CDTC(Ai) = P [Yi > µ] =

∫ +∞

µ

fi (y) dy (3.2)

3.6 result and analysis

In this section, we present the evaluation of the LSTM architectures studied for predicting

the price of financial assets. To show the importance and utility of the CDTC we tested our

architectures as usual with one single iteration, then ran our models 100 times and computed

the average results. Finally, we employed the CDTC to reveal latent information within the

data.

3.6.1 Traditional evaluation

The conventional evaluation was conducted in two stages. In the first stage, we ran our models

once and attempted to compare the results. In the second stage, we ran each of our models 100

times, calculated the average prediction, and then assessed the outcomes.

3.6.1.1 Single iteration

Initially, we aimed to visually assess the accuracy of our architectures, so we plotted the actual

price alongside the predictions from models with and without PCA. Figures 3.1 and 3.2 show

the actual price as the black curve, the architecture without PCA as the blue curve, and the

architecture with PCA as the red curve.
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Figure 3.1: visual comparison of real and predicted prices -single iteration- using 6 input
features, with and without PCA (architecture 1 and 3).

Figure 3.2: visual comparison of real and predicted prices -single iteration- using 91 input
features, with and without PCA (architecture 2 and 4).

In both figures 3.1 and 3.2, the predictions generally align closely with the actual values,

suggesting that PCA does not significantly affect the accuracy of the predictions in this run.
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It is important to note that we found that in 77% of the cases, the PCA improves the

performance for the LSTM model with 91 input features. With the 6 input features, it was

in 72% of the runs the architecture with PCA outperformed the architecture without PCA. But,

this single iteration run belongs to the minority of cases where the architecture without PCA

outperformed the ones with PCA. As illustrated in the localized view in figure 3.3, where

predictions with PCA are less accurate than those without PCA.

Figure 3.3: Localized View on one-year period : visual comparison of real and predicted prices
-single iteration - using 6 input features, with and without PCA (architecture 1 and 3).

To validate these findings, we chose some of the widely used metrics in regression analysis

defined in the first chapter 1.4 to compare our architectures. The results presented in Table

3.2 confirm our visual observation that PCA does not have a significant impact on prediction

accuracy. In fact, in both cases, predictions without PCA outperformed those with PCA across

all evaluation metrics. Additionally, architectures with 91 input features consistently yielded

better results compared to those with 6 input features.

At this level, it is important to emphasize that these results only represent a single execution

of the algorithm. Other runs might show different results. It is therefore not possible to draw

conclusions from this single example.
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Table 3.2: Comparing the stock price prediction results of the different architectures on one
single iteration

Evaluation metric Architecture 1 Architecture 2 Architecture 3 Architecture 4
R2 0.973 0.985 0.958 0.982
RMSE 4.848 3.602 6.049 3.922
acsMAE 4.039 2.588 5.032 2.998
MSE 23.503 12.975 36.586 15.381
MAPE 4.167 2.601 4.927 2.935
Adjusted_R2 0.973 0.984 0.958 0.982
Median_AE 3.541 1.737 4.225 2.361
sMAPE! 4.274 2.580 5.080 2.962
MSLE 0.002 0.001 0.003 0.001
MASE 2.935 1.880 3.656 2.178
sMSPE 0.001 0.000 0.001 0.000

As we can clearly see, in table 3.2 Architecture 2 outperforms all the other architectures in

most metrics. According to this iteration PCA doesn’t have a significant impact on prediction,

it even fails to perform as well as the first two architecture

3.6.1.2 100 iterations

For the 100-iteration test, we ran each of our models 100 times. We then calculated the average

prediction for each day and visualized the results in Figures 3.4 and 3.5. As in the previous

figures, the black curve represents the actual price, the blue curve shows the average prediction

without PCA, and the red curve represents the average prediction with PCA.

UMA/ENSI 98



ASSESSMENT OF DEEP LEARNING ALGORITHMS FOR FINANCIAL
FORECASTING

Figure 3.4: Comparison of real and predicted prices -100 iterations- using 6 input features, with
and without PCA. (architecture 1 and 3)

Figure 3.5: Comparison of real and predicted prices -100 iterations- using 91 Input features,
with and without PCA.(architecture 2 and 4).
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Unlike the single-iteration results, Figures 3.4 and 3.5 clearly show that PCA enhances

prediction accuracy, with the predictions sometimes overlapping the actual prices. This is even

more evident in Figure 3.6, where the predictions with PCA closely align with the real prices.

Figure 3.6: Localized View: Comparison of real and predicted prices -100 iterations- using 6
input features, with and without PCA on one-year period.(architecture 1 and 3)

To validate these findings, we used standard evaluation metrics. The results are summarized

in Table 3.3.

Table 3.3: Comparing the stock price prediction results of the different architectures on 100
iteration

Evaluation metric Architecture 1 Architecture 2 Architecture 3 Architecture 4
R2 0.974 0.877 0.986 0.986
RMSE 4.742 10.373 3.491 3.449
MAE 3.971 7.679 2.744 2.633
MSE 22.489 107.598 12.189 11.897
MAPE 4.090 6.671 2.866 2.638
Adjusted_R2 0.974 0.863 0.986 0.986
Median_AE 3.535 4.887 2.294 2.051
sMAPE! 4.191 7.005 2.887 2.641
MSLE 0.002 0.007 0.001 0.001
MASE 2.886 5.580 1.994 1.913
sMSPE 0.001 0.002 0.000 0.000
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Based on the results in Table 3.3, it’s evident that PCA has a positive impact, improving

prediction accuracy in both cases.

Its worth noting that the architecture that produced the best results in the single iteration test

turned out to be the worst-performing in this 100-iteration test, underscoring the importance of

a large number of trials for reliable assessment.

3.6.2 Probabilistic evaluation

In this section, we will evaluate the architectures according to the probabilistic criterion CDTC.

Estimating the PDFs of the performance indicators will make it possible to better evaluate

the relative prediction capacity of each algorithm. For this, the predictions are executed 100

times by each network generating a set composed of 100 performance indicators. We have

chosen to use the most common performance indicator in the field of financial prediction,

namely R2. Each generated R2 is considered as a realization of an absolutely continuous

random variable. The PDFs of the distribution of R2 from each network are estimated by the

non-parametric kernel estimator with optimization of the bandwidth by the plug-in iterative

algorithm. In Figure 3.7, the estimated distributions of R2 generated from networks 1 and 3

are represented. We can observe that the density in red representing the distribution of R2s

resulting from architecture 3 is statistically closer to 1 compared to those of the distribution

resulting from architecture 1. In addition, the distribution of R2s resulting from network 1

is clearly bimodal showing an instability of convergence of this network. The figure 3.9 also

shows the predominance of network 4 over network 2. Here too, the PDF of the random variable

R2 from architecture 4 converges towards a single mode with a low variance, unlike the PDF

of R2 from network 2 which presents a high number of small modes reflecting the instability of

this network.

It is noteworthy to point out that in the figure 3.9 we can clearly see that the first architecture

converges to two different values (bimodal cure) which can explain why in the one-iteration test

it didn’t perform well.
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Figure 3.7: Probability density function of prediction errors of Architecture 1 (ARCH1) and
Architecture 3 (ARCH3).

Figure 3.8: Visualization of CDTCARCH1 and CDTCARCH3.
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Figures 3.8 and 3.10 represent the CDTC criterion, which is evaluated by the integral value

from the average of the concatenation of generated R2 sets at +∞ of the estimated PDFs. A

high value of this integral indicates better prediction performance of the algorithm.

Figure 3.9: Probability density function of prediction errors of Architecture 2 (ARCH2)
and Architecture 4 (ARCH4).

Figure 3.10: Visualization of CDTCARCH2 and CDTCARCH4.
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Figure 3.11: A zoomed view to the probability density function of prediction errors of
Architecture 2 (ARCH2) and Architecture 4 (ARCH4)

It is interesting to notice, as illustrated in Figure 3.11, which provides a zoomed view of

the PDF for architecture 2, that it does not respect the finite endpoint of the support. The

chosen error metric, R2, has a bounded support of [0, 1], and since the errors are close to

1, we observed an overflow at the boundary. Normally, in such cases, the application of the

Diffeomorphic KDE, rather than the fast KDE, would be more appropriate. The Diffeomorphic

KDE is a generalization of KDE, specifically developed to handle cases with respect to the

support. However, in this case, the overflow is insignificant, and it is clear that architecture 4 is

outperforming architecture 2.

Table 3.4: CDTC values of studied architecture models

Architecture model CDTC
Architecture 1 0.4004
Architecture 2 0.5514
Architecture 3 0.7375
Architecture 4 0.9804

The values CDTC are reported in table 3.4. The CDTC values highlight the significant

impact of PCA on enhancing the model stability, increasing it from 0.4 with Architecture 1
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(ARCH1) to 0.73 with Architecture 3 (ARCH3), and from 0.55 with Architecture 2 (ARCH2)

to 0.98 with Architecture 4 (ARCH4).

The major limitation of our approach is that it requires the repeating of the system a statisti-

cally significant number of times (usually 100 times), which can be very time-consuming with

some systems. But we strongly believe that as Machine learning are gaining more and more

importance in all aspects of the life even in the critical ones and many people rely blindly on

these technologies, it is worth the extra time and effort to have a more insightful evaluation of

the model or the algorithm

3.7 Conclusion

In this chapter, we applied a probabilistic criterion based on the FKDE to assess the impact of

dimensionality reduction on LSTM models. We considered the error variation as a realization

of a continuous random variable, and we estimated their probability density function. This

estimation uncovered that the models without PCA tend to converge to two different means. It

is important to highlight that none of the other evaluation metrics have captured this tendency.

And as You cant manage what you cant measure (a quote often attributed to Peter Drucker, a

renowned management consultant, educator, and author) stands the importance of our method.

We also emphasized the importance of using a significant number of iterations, as relying on

too few iterations can lead to entirely inaccurate conclusions.
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Chapter 4 Abstract

This chapter addresses the segmentation of hyperspectral images using advanced geometric

deep learning techniques. It begins with an introduction to hyperspectral imaging and highlights

the challenges inherent in segmenting high-dimensional hyperspectral data.

The chapter then provides an overview of key concepts relevant to hyperspectral image

segmentation. This includes a discussion on the application of Principal Component Analysis

(PCA) in hyperspectral image processing, which aids in dimensionality reduction and feature

extraction. The section also covers multi-scale graph construction, laying the groundwork for

the subsequent application of geometric deep learning methods.

In the methodology section, we delve into specific deep learning architectures, including

Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs). A hybrid

GCN-GAT model is proposed, combining the strengths of both architectures to enhance seg-

mentation performance. The proposed approach is described in detail, alongside the training

and testing procedures employed in the experiments.

The experimental setup section outlines the datasets used for evaluation, as well as the

metrics for assessing segmentation performance. This chapter presents results and discussions

centered on the Pavia University dataset, showcasing the effectiveness of the proposed geomet-

ric deep learning approach.

In conclusion, this chapter summarizes the findings, highlighting the potential of geometric

deep learning methods for improving hyperspectral image segmentation and suggesting future

avenues for research and development in this field.
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4.1 Introduction

Hyperspectral imaging (HSI) has emerged as a fundamental technology in remote sensing,

enabling the acquisition of detailed spectral information across numerous spectral bands in a

single image. This rich spectral data facilitates the identification and classification of materials

and objects with high precision. However, factors like limited training data, mixed pixels,

atmospheric effects, and geometric distortions raise significant challenges for accurate and

efficient image segmentation [Gao et al., 2018]. Traditional machine learning approaches often

struggle to capture the intricate spatial-spectral relationships present in HSI data, leading to

suboptimal performance [Grewal et al., 2023].

In recent years, geometric deep learning (GDL) has gained popularity as a powerful frame-

work for processing non-Euclidean data structures, such as graphs and manifolds [Bronstein

et al., 2017]. Using the graph-based representation of data, GDL methods can effectively model

the spatial dependencies and structural information in hyperspectral images, enhancing segmen-

tation accuracy. Among the various GDL techniques, Graph Convolutional Networks (GCN)

and Graph Attention Networks (GAT) have demonstrated remarkable success in capturing both

local and global features, making them suitable for complex image segmentation tasks [Shi

et al., 2023].

This chapter provides a brief overview of hyperspectral image segmentation, emphasizing

the advancements brought by geometric deep learning. We compared GCN and GAT, with and

without PCA and introduced a novel hybrid model designed to leverage the strengths of both

architectures. The subsequent sections detail our proposed approach, including the algorithmic

framework, experimental setup, and evaluation metrics. Finally, we present and discuss the

experimental results, highlighting the efficacy of our model across various benchmark datasets.
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4.2 An Overview on Hyperspectral Image Segmentation

Hyperspectral image segmentation involves partitioning an HSI into meaningful regions corre-

sponding to different materials or objects. Traditional segmentation methods, such as k-means

clustering [Ranjan et al., 2017], spectral angle mapper (SAM) [Park et al., 2007], and support

vector machines (SVM) [Melgani and Bruzzone, 2004] [Pal and Foody, 2010], Random Forests

(RF) [Ham et al., 2005], primarily rely on spectral information. While these methods can

achieve reasonable accuracy, they often neglect the spatial context, leading to fragmented or

noisy segmentation results.

To address these limitations, spatial-spectral approaches have been developed, which incor-

porate both spectral and spatial information to improve segmentation performance. Techniques

such as Markov Random Fields (MRF) [Li et al., 2011] and Conditional Random Fields (CRF)

[Zhong et al., 2019] have been employed to model spatial dependencies. Despite their effective-

ness, these probabilistic models can be computationally intensive and may not scale well with

high-dimensional data.

4.2.1 PCA in Hyperspectral Image Processing

The high dimensionality of hyperspectral data poses significant challenges, including the curse

of dimensionality, increased computational complexity, and the risk of overfitting in machine

learning models. Dimensionality reduction techniques are thus essential for simplifying the

data while preserving its essential characteristics. Principal Component Analysis (PCA) is one

of the most widely used dimensionality reduction methods in HSI processing.

In the context of HSI segmentation, PCA helps mitigate the curse of dimensionality, reduc-

ing computational complexity and enhancing model convergence. Recent studies have explored

the integration of PCA with deep learning models to improve segmentation performance. For

instance, combining PCA with Convolutional Neural Networks (CNN) has shown promising

results in enhancing feature representation and reducing noise [Liu et al., 2017] [Rodarmel and

Shan, 2002] [Kang et al., 2017].
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4.2.2 Multi-Scale Graph Construction in HSI

Multi-scale graph construction involves creating multiple graph representations of the HSI

data at different spatial or spectral resolutions. This approach allows models to capture both

fine-grained and coarse-grained features, enhancing segmentation performance.

Recent studies have demonstrated that multi-scale graph constructions, when integrated

with GDL models, significantly improve the robustness and accuracy of HSI segmentation

[Ding et al., 2021] [Li et al., 2024].

4.2.3 Geometric Deep Learning for Image Segmentation

Geometric Deep Learning extends traditional deep learning paradigms to non-Euclidean do-

mains, enabling the processing of graph-structured data [Bronstein et al., 2017]. In the con-

text of HSI segmentation, GDL methods represent the image as a graph, where each pixel

corresponds to a node, and edges capture the spatial or spectral relationships between pixels.

This graph-based representation allows for the effective modeling of spatial dependencies and

structural information, which are crucial for accurate segmentation.

4.2.3.1 Graph Convolutional Networks (GCN)

Graph Convolutional Networks generalize the concept of convolution to graph structures, allow-

ing for the aggregation of information from neighboring nodes. GCNs have been successfully

applied to various tasks, including node classification, link prediction, and image segmentation.

In HSI segmentation, GCNs can effectively capture local spatial-spectral patterns, enhancing

classification accuracy [Kipf and Welling, 2016] [Qin et al., 2018] [Qin et al., 2018].

The fundamental operation in GCNs involves the propagation and transformation of node

features through multiple layers, where each layer aggregates features from a node’s local

neighborhood. This hierarchical feature extraction enables the model to learn complex patterns

and dependencies inherent in hyperspectral data. However, standard GCNs may face limitations
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in capturing long-range dependencies and varying node importance, which can be critical for

accurately segmenting heterogeneous regions in HSI.

4.2.3.2 Graph Attention Networks (GAT)

Graph Attention Networks introduce an attention mechanism, enabling the model to weigh the

importance of neighboring nodes dynamically. This adaptive weighting facilitates the capture

of more nuanced spatial relationships, leading to improved segmentation performance. GATs

have demonstrated superior performance in scenarios where the relevance of neighboring nodes

varies across the graph [Veličković et al., 2017] [Zhao et al., 2021] [Shi et al., 2023].

In the context of HSI segmentation, GATs can selectively focus on the most relevant spectral

and spatial features, enhancing the model’s ability to distinguish between different materials

and objects. Moreover, the attention mechanism can mitigate the effects of noise and irrelevant

information, which are common in hyperspectral data.

4.3 Methodology

This section outlines the methodology employed for hyperspectral image segmentation using

geometric deep learning. We focus on three distinct model architectures: Graph Convolutional

Networks (GCN) only, Graph Attention Networks (GAT) only, and a Hybrid GCN-GAT model.

Each architecture leverages the strengths of GDL to capture spatial-spectral relationships inher-

ent in HSI data. Additionally, we explore the impact of Principal Component Analysis (PCA)

on these models to assess dimensionality reduction’s effect on segmentation performance.

4.3.1 Graph Convolutional Network (GCN)

The GCN model used in this research consists of the following layers:

1. Input Layer: Accepts the normalized spectral features of each pixel.
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2. Graph Convolutional Layers: Two GCN layers are stacked, with hidden dimensions of

128 and 64, respectively. Each GCN layer performs convolution operations on the graph,

aggregating features from neighboring nodes.

3. Batch Normalization: Applied after each GCN layer to stabilize and accelerate training.

4. Activation Function: ReLU is used to introduce non-linearity.

5. Dropout Layers: Applied after each GCN layer to prevent overfitting.

6. Fully Connected Layer: Transforms the aggregated features into class scores.

7. Output Layer: Produces log-softmax probabilities for each class.

4.3.2 Graph Attention Network (GAT)

The GAT model consists of the following layers:

1. Input Layer: Accepts the normalized spectral features of each pixel.

2. Graph Attention Layers: Two GAT layers are stacked, each with 4 attention heads. The

first GAT layer transforms the input features into 128-dimensional representations, while

the second GAT layer reduces them to 64 dimensions.

3. Batch Normalization: Applied after each GAT layer to stabilize and accelerate training.

4. Activation Function: ELU is used to introduce non-linearity.

5. Dropout Layers: Applied after each GAT layer to prevent overfitting.

6. Fully Connected Layer: Transforms the aggregated features into class scores.

7. Output Layer: Produces log-softmax probabilities for each class.

4.3.3 Hybrid GCN-GAT Model

The Hybrid GCN-GAT model combines the strengths of both GCN and GAT architectures. By

integrating graph convolutional and attention-based layers, the model can effectively capture

both local feature aggregation and dynamic weighting of neighbor contributions.

The HybridGCNGAT model operates by first constructing a multi-scale graph representa-

tion of the hyperspectral image data. This involves creating multiple graphs at different scales,

capturing both fine-grained and coarse-grained spatial-spectral relationships among pixels. The

model then processes these graphs through parallel GCN and GAT pathways:
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1. Input Layer: Accepts the normalized spectral features of each pixel.

2. GCN Branch:

• Two GCN layers with hidden dimensions of 128 and 64, respectively.

• Batch normalization and ReLU activation after each GCN layer.

• Dropout layers to prevent overfitting.

3. GAT Branch:

• Two GAT layers with 4 attention heads each, transforming features into 128 and 64

dimensions, respectively.

• Batch normalization and ELU activation after each GAT layer.

• Dropout layers to prevent overfitting.

4. Feature Fusion:

• Concatenation of the outputs from the GCN and GAT branches.

• A fully connected layer (FC1) with 256 neurons, followed by batch normalization

and ReLU activation.

• Dropout layer to prevent overfitting.

• Final fully connected layer (FC2) producing class scores.

5. Output Layer: Produces log-softmax probabilities for each class.

4.3.4 The proposed approach

The proposed methodology follows a systematic approach, encompassing data preprocessing,

model training, and evaluation. Below is an overview of the algorithmic framework:

1. Data Loading: Import hyperspectral image data and corresponding ground truth labels.

2. Dimensionality Reduction (PCA): Optionally apply PCA to reduce the number of spec-

tral bands while retaining significant variance.

3. Data Normalization: Normalize the feature vectors to have zero mean and unit variance.
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4. Graph Construction: Create a graph representation of the HSI using K-Nearest Neigh-

bors (KNN) based on spectral similarity.

5. Model Initialization: Initialize the chosen model architecture (GCN, GAT, or Hybrid

GCN-GAT).

6. Training: Train the model using the training dataset, employing techniques like batch

normalization, dropout, and early stopping to enhance performance.

7. Evaluation: Assess the model’s performance on the test dataset using metrics such

as Overall Accuracy (OA), Average Accuracy (AA), Kappa Coefficient, and per-class

accuracy. Additionally, compare processing times across different models.

8. Visualization: Generate visual representations of the segmentation results and confusion

matrices to interpret model performance.

4.3.5 Model Training and Testing

To comprehensively evaluate the proposed models, we conduct experiments using three dif-

ferent architectures: GCN-only, GAT-only, and Hybrid GCN-GAT. Each model is trained and

tested under identical conditions to ensure a fair comparison.

a) Training Procedure:

• Optimizer: Utilize the AdamP optimizer, which offers adaptive weight decay and effi-

cient convergence properties.

• Learning Rate Scheduler: Implement a ReduceLROnPlateau scheduler to adjust the

learning rate based on validation loss, promoting stable training.

• Early Stopping: Incorporate early stopping with a patience parameter to prevent overfit-

ting by halting training when performance ceases to improve.

• Batch Normalization and Dropout: Apply batch normalization and dropout layers

throughout the network to enhance generalization and reduce overfitting.
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b) Testing Procedure:

• Inference: Perform forward passes on the test dataset to obtain class predictions.

• Performance Metrics: Calculate OA, AA, Kappa Coefficient, and per-class accuracy to

quantify model performance.

• Processing Time: Measure the time taken for training and inference to compare the

computational efficiency of each model.

• Confusion Matrix: Generate confusion matrices to visualize class-wise performance and

identify potential misclassifications.

4.4 Experimental Setup

4.4.1 Datasets

We evaluate our proposed model on a widely used hyperspectral datasets the Pavia University

(an Urban Area).

The Pavia University dataset consists of 610 × 340 pixels with 103 spectral bands. It

includes 9 classes such as Asphalt, Grass, Gravel, Trees, Metal, Bare Soil, Bitumen, Shadows,

and Buildings.

4.4.2 Evaluation Metrics

To assess the performance of the segmentation models, we employ the following metrics:

• Overall Accuracy (OA): Measures the proportion of correctly classified pixels, calcu-

lated as:

OA =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, and FN is the number of false negatives.
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• Average Accuracy (AA): Computes the average of the per-class accuracies, given by:

AA =
1

C

C∑
i=1

TPi

TPi + FPi

where C is the number of classes, TPi is the number of true positives for class i, and FPi

is the number of false positives for class i.

• Kappa Coefficient (κ): Evaluates the agreement between predicted and true labels, ac-

counting for chance agreement, calculated as:

κ =
Po − Pe

1− Pe

where Po is the observed agreement and Pe is the expected agreement by chance, given

by:

Pe =
C∑
i=1

(TPi + FPi)(TPi + FNi)

N2

and N is the total number of instances.

• Accuracy per Class: Provides detailed insight into the model’s performance across each

class, defined as:

Accuracyi =
TPi

TPi + FPi + FNi

for each class i.

4.5 Results and Discussion

4.5.1 Pavia University Dataset

For the dataset Pavia University, The Cumulative Variance is depicted in the figure 4.1. So we

decided to retain 3 dimensions, thus 99.16% of the information.
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Figure 4.1: Cumulative Variance for the PaviaU Dataset Explained by PCA Components.

Figure 4.2 visually compares the segmentation results of the six algorithms, while Table 4.1

provides a quantitative analysis of their performance.
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Figure 4.2: Segmentation Results on Pavia University Dataset.

Table 4.1: Performance Metrics for Pavia University Dataset

Algorithm Training Time O A % A A % Kappa Score
GCN (No PCA) 250.98 s 96.24 96.55 0.9505
GCN (With PCA) 220.73 s 98.21 98.84 0.9764
GAT (No PCA) 194.29 s 90.51 93.35 0.8774
GAT (With PCA) 168.73 s 91.07 95.80 0.8853
Hybrid GCN-GAT (No PCA) 223.38 s 97.50 97.70 0.9670
Hybrid GCN-GAT (With PCA) 199.62 s 98.27 99.15 0.9772

The results presented in Table 4.1 highlight the comparative performance of the six algo-

rithms. Overall, the Hybrid GCN-GAT model, both with and without Principal Component

Analysis (PCA), demonstrated superior performance, achieving the highest overall accuracy of

98.27% with PCA and 97.50% without PCA. This indicates that the hybrid approach effectively

leverages the strengths of both Graph Convolutional Networks (GCN) and Graph Attention Net-

works (GAT) to enhance classification accuracy. Notably, the GCN with PCA also performed
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exceptionally well, achieving an overall accuracy of 98.21%, which underscores the importance

of dimensionality reduction in improving model performance. In contrast, the GAT algorithm,

while showing some promise, exhibited lower accuracy, particularly in the absence of PCA,

with an overall accuracy of 90.51%.

Table 4.2: Per Class Precision for Pavia University Dataset

Class GCN GCN + PCA GAT GAT + PCA GCN-GAT GCN-GAT + PCA
Asphalt 94.17 95.53 87.68 86.68 94.67 97.34
Grass 96.60 98.28 87.81 85.86 98.07 97.41
Gravel 94.13 99.37 84.92 96.35 96.51 99.68
Trees 98.26 99.13 97.82 98.59 98.48 99.02
Metal 99.01 99.75 98.26 99.26 99.26 100.00
Bare Soil 98.14 99.01 97.28 99.87 98.81 99.87
Bitumen 95.24 100.00 96.74 100.00 96.99 100.00
Shadows 93.39 98.46 89.59 95.57 96.56 99.00
Buildings 100.00 100.00 100.00 100.00 100.00 100.00

Furthermore, the table 4.2 present the class-level accuracy results. For instance, the GAT

(No PCA) model did not perform well with the class "Gravel," achieving only 84.92% accuracy,

while the Hybrid GCN-GAT (With PCA) model excelled across all classes, attaining a perfect

score of 100% for "Bitumen" and "Buildings." This consistent high performance across multiple

classes indicates the robustness of the hybrid approach, making it well-suited for complex clas-

sification tasks in hyperspectral imaging. Overall, the findings suggest that integrating multiple

deep learning techniques and applying PCA can significantly enhance classification accuracy,

providing valuable insights for future research and practical applications in hyperspectral image

analysis.

4.6 Conclusion

This chapter presented a start point exploration of hyperspectral image segmentation using geo-

metric deep learning, with a focus on Graph Convolutional Networks and Graph Attention Net-

works. We introduced a novel hybrid model, HybridGCNGAT, which combines the strengths

of both GCN and GAT architectures to achieve superior segmentation performance. Through

comprehensive experiments on the Pavia University we demonstrated the significant impact of
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PCA-based dimensionality reduction on model accuracy and efficiency. The HybridGCNGAT

model consistently outperformed traditional GCN and GAT models, highlighting its potential

for advanced hyperspectral image analysis. Future work may explore the integration of ad-

ditional deep learning techniques and further optimization of graph construction methods to

enhance segmentation performance.
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This chapter concludes the Ph.D. thesis, summarizing its key findings and highlighting

future research directions. The thesis encompassed two primary domains: unsupervised clas-

sification with the Expectation Maximization (EM) algorithm and regression evaluation using

Long Short Term Memory (LSTM) networks.

Summary

The first part of the thesis introduced a novel variant of the EM algorithm, the Diffeomorphism

EM (EMD), designed to address the boundary issues inherent in applying EM to Gaussian

Mixture Models (GMMs) with bounded support. By transforming the data from bounded to

unbounded support using a diffeomorphic mapping, EMD applies unsupervised classification

on infinite support before reverting the data to its original space. This approach was validated

on simulated datasets and successfully applied to ultrasound image segmentation, showcasing

its effectiveness. The promising results encourage future research into applying EMD to other

medical imaging modalities, such as X-ray, CT scans, and mammography.

In the second part, we evaluated the performance of regression algorithms, focusing on

LSTM networks for financial forecasting. Through a comprehensive review of existing re-

gression evaluation metrics, we identified a significant gap: the lack of an evaluation met-

ric that could effectively assess the stability of deep learning models. Most metrics were

found to rely on single iterations, which could lead to erroneous conclusions. To address this,

we proposed to estimate their error distribution and to calculate the Cumulative Distribution

Target Criterion (CDTC), a probabilistic evaluation metric based on non-parametric density

estimation. The CDTC, utilizing the Fast Kernel Density Estimator (FKDE) with plug-in

bandwidth optimization was applied to evaluate the stability and accuracy of LSTM models,

and how they are influenced by dimensionality reduction via PCA. The results confirmed that
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the error’s distribution and the CDTC provides a deeper and more reliable assessment of model

performance compared to traditional metrics.

The last part of this thesis focused on hyperspectral image segmentation, employing geo-

metric deep learning methods. We compared Graph Convolutional Networks (GCNs), Graph

Attention Networks (GATs), and a hybrid GCN-GAT model. These models were tested with

and without Principal Component Analysis (PCA). The results demonstrated that merging ge-

ometric deep learning techniques offers substantial improvements in segmentation accuracy,

highlighting the potential of these methods for complex, high-dimensional data like hyperspec-

tral images.

Perspectives and Future Research

The research conducted in this thesis opens several avenues for future exploration.

As a future perspective, we aim to extend the EMD (Diffeomorphism Expectation Maxi-

mization) approach to handle multivariate data. Currently, the method operates on univariate

data, limiting its application to problems where relationships between multiple variables are not

considered. By transforming the algorithm to work with multivariate data, we can significantly

broaden its applicability, allowing it to model more complex datasets, capture inter-variable

dependencies, and improve its performance in multidimensional classification problems.

The CDTC (Cumulative Distribution Target Criterion) holds significant potential for broader

applications beyond its initial use in financial forecasting. One promising direction is its appli-

cation in evaluating machine learning algorithms across various domains, such as healthcare,

image processing, and environmental modeling. The criterion’s focus on error distributions

rather than single-point metrics makes it especially valuable for assessing models in fields where

accurate prediction intervals and uncertainty estimation are crucial.

The promising results obtained from the hybrid GCN-GAT model in hyperspectral image

classification suggest several avenues for future research and development. One significant

perspective is the exploration of more advanced ensemble learning techniques that could further
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enhance the robustness and accuracy of classification models. Investigating other combinations

of deep learning architectures and their potential synergies could yield models that better cap-

ture the intricacies of hyperspectral data.

Another area of interest lies in the optimization of hyperparameters and network architec-

tures to improve model performance. Implementing automated hyperparameter tuning methods,

such as Bayesian optimization or genetic algorithms, could provide insights into the most

effective configurations for achieving higher accuracy and efficiency.
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APPENDIX : The Mathematical
Foundation for Bandwidth Optimization

To find the optimal bandwidth h∗
N for a Kernel Density Estimator (KDE), we need to

minimize the Mean Integrated Squared Error (MISE). We start by considering the Mean Square

Error (MSE) of the estimator:

MSE = E

[∣∣∣f̂N − f
∣∣∣2] = E

[
f̂ 2
N

]
+ f 2 − 2fE

[
f̂N

]
= E

[
f̂ 2
N

]
−
(
E
[
f̂N

])2
+
(
E
[
f̂N

])2
+ f 2 − 2fE

[
f̂N

]

= var
(
f̂N

)
+
(
f − E

[
f̂N

])2
The variance of the density estimator f̂ can be expressed as follows:

var
(
f̂N

)
=

1

NhN

∫
K2(u)f (x− hNu) du−

1

N

(∫
K(u)f (x− hNu) du

)2

(A.1)

And the expected value of f̂ is given by:

E
[
f̂(x)

]
=

∫
K(u)f(x− uh)du.

Now we the expression (f − E[f̂N ])
2 can be writing as

(
f − E[f̂N ]

)2
=
(
E[f̂N ]− f

)2
==

[∫
K(u) (f(x− uhN)− f(x)) du

]2
(A.2)
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Using equations (A.1) and (A.1), the MSE can be writing as :

E

[∣∣∣f̂N − f
∣∣∣2] = 1

NhN

∫
K2(u)f(x− hNu) +

[∫
K(u) (f(x− uhN)− f(x)) du

]2
−

1

N

(∫
K(u)f(x− hNu)du

)2

By introducing the following Taylor expansion:

f(x− hNu) = f(x)− hNuf
′(x) +

u2

2
h2
Nf

′′(x)− u3h3
N

6
f (3)(x− θhNu)

where 0 < θ < 1, MISE can be expressed in terms of hN by ∆hN

MISE ≈ ∆(hN) =
M(K)

NhN

+
J(f)h4

N

4
(A.3)

with M(k) =
∫ +∞
−∞ K2(u)du and J(f) =

∫ +∞
−∞ (f ′′(x))2dx

where f” is the second derivative of f .

The minimum value of the function ∆(hN) is obtained by annulling its derivative ∆′(hN) =

0.

∆′(hN) = −
M(K)

Nh2
N

+ h3
NJ(f) = 0

Therefore, the optimal value of hN noted by h∗
N becomes:

h∗
N = N− 1

5 . (J(f))−
1
5 . (M(K))

1
5 (A.4)

with

M(k) =

∫ +∞

−∞
K2(u)du

and

J(f) =

∫ +∞

−∞
(f ′′(x))2dx
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Analysis of hyperspectral images by content using a Geometric

Deep Learning approach

Sarra FALLEH

Abstract

This thesis explores two central tasks in machine learning: classification, and regression, with

a particular focus on unsupervised classification using the Expectation-Maximization (EM)

algorithm, and regression using deep learning models, specifically Long Short-Term Memory

(LSTM) networks.

The first part of this thesis focuses on unsupervised classification using the EM algorithm.

A key limitation of the traditional EM algorithm when applied to Gaussian Mixture Models

(GMMs) with bounded or semi-bounded support is its tendency to produce overflow problems

near the boundary of the support. To address this, we propose a novel variant of the EM

algorithm based on a diffeomorphic transformation that maps data from bounded support to

unbounded support, performs unsupervised estimation in the transformed space, and then maps

the data back to its original space.

In the second part, we evaluate regression algorithms, particularly the LSTM model, under

various configurations. We assess LSTM performance using existing parameters, post-technical

analysis, and after applying PCA to reduce the dimensionality of the input features. Addition-

ally, we employ Kernel Density Estimation (KDE) with bandwidth optimization to estimate the

probability distribution of model errors. The Cumulative Distribution Target Criterion (CDTC),

a more robust evaluation metric, is utilized to provide deeper insights into model performance

compared to traditional metrics.

In the last part, we investigate the application of Geometric Deep Learning (GDL) tech-

niques to hyperspectral image (HSI) segmentation. Hyperspectral images, due to their high

dimensional nature, pose significant challenges for traditional machine learning approaches. To

address these challenges, we compare three models: Graph Convolutional Networks (GCNs),
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Graph Attention Networks (GATs), and a hybrid GCN-GAT model. These models are eval-

uated with and without Principal Component Analysis (PCA) to assess their performance in

segmenting hyperspectral data.

Key words: Machine Learning, Classification, Regression, Expectation-Maximization Al-
gorithm, Gaussian Mixture Models, LSTM, Bounded Support, Unbounded Support, Kernel
Density Estimation, Fast Plug-in Algorithm, Cumulative Distribution Target Criterion (CDTC),
Principal Component Analysis (PCA), Hyperspectral image segmentation, Geometric Deep
Learning.
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